

# Hydrogen Pathway Analysis using HyPro

Brian James / Julie Perez Directed Technologies, Inc. 17 May 2007

> Project ID # AN1

This presentation does not contain any proprietary, confidential, or otherwise restricted information

## Overview

## Timeline

- Start: ~May 2005
- End: September 2007
- 77% complete

### **Barriers**

- Lack of understanding of the transition of a hydrocarbonbased economy to a hydrogenbased economy.
- Lack of prioritized list of analyses for appropriate and timely recommendations.
- Stove-piped/Siloed Analytical Capabilities.

### Budget

- Total project funding: \$750,000
- FY05: \$110,000
- FY06: \$350,000
- FY07: \$290,000

### Partners

- Sentech, Inc.
- Advisory Board:
  - H<sub>2</sub>Gen Innovations
  - ChevronTexaco
  - Teledyne Energy Services
  - Air Products
  - Sentech, Inc.



| Overall | <ul> <li>Create a tool robust enough to test the impact of different<br/>assumptions on the development of hydrogen infrastructure<br/>and exercise it to determine the key drivers of the hydrogen<br/>transition.</li> </ul> |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2005    | • Develop a production database from H2A and an economic cost model to determine and compare discounted cash flows.                                                                                                            |
| 2006    | <ul> <li>Enhance model's capabilities by adding DCF of delivery and<br/>dispensing and costs tables for results</li> </ul>                                                                                                     |
|         | <ul> <li>Increase database options and sources of data</li> </ul>                                                                                                                                                              |
|         | <ul> <li>Exercise the tool under different assumptions to understand the<br/>infrastructure's sensitivity to different parameters.</li> </ul>                                                                                  |
| 2007    | <ul> <li>Model upgrades</li> </ul>                                                                                                                                                                                             |
|         | <ul> <li>Further sensitivity analyses</li> </ul>                                                                                                                                                                               |
|         | <ul> <li>Analyze different scenarios</li> </ul>                                                                                                                                                                                |
|         | <ul> <li>Document results</li> </ul>                                                                                                                                                                                           |

Directed Technologies, Inc. 17 May 2007 DOE Merit Review





- Yearly hydrogen demand is entered by the user
- Model evaluates regions (e.g. cities) as opposed to the whole nation
- Build decisions made with perfect foresight
- Analysis Period
  - 10 years for distributed production
  - 20 years for central production
- Remote infrastructure pathways include production, terminal, delivery and dispensing
- Distributed infrastructure pathways include production and dispensing

# **Objective Cost Function**

### Cost of Hydrogen [\$/kg] at Pump =

Production cost + Terminal cost + Delivery cost + Dispensing cost + Other Costs

- All component costs are determined by NPV calculations performed dynamically.
- Component costs include effects from;
  - State of technology development,
  - Infrastructure capacity, and
  - Varying plant utilization
- Production includes feedstock, capital, and O&M.
- Terminals are the transport staging area converting 300 psi H<sub>2</sub> to the appropriate pressure and state for transport.
- *Delivery* encompasses the various types of trucks and pipeline transport.
- *Dispensing* includes all the equipment needs at the station to convert delivered H<sub>2</sub> into the form accepted by vehicles.
- Other costs are credits and taxes which can be quantified in \$/kg can applied to a specific segment or the complete infrastructure.



- Remote production refers to large production plants that require delivery to dispensing stations.
- Feedstock costs vary with plant location.
- Natural Gas and Coal plants are evaluated with and without Carbon Capture, Sequestration and Disposal (CCS&D).



- Distributed production refers to small production plants that include dispensing stations at the same location.
- Plants are located within the city, like gas stations.

## **Database Refinements**

### **Production**

- Added FC Ethanol
- Added Regional 2015 Coal Plant in Wyoming
- Located Biomass Plant at Regional rice fields
- Increased scope of Carbon Capture, Sequestration and **Disposal Costs**
- Delivery

Directed Techr

- Introduce component costs for **DCF** analysis
- Eliminated Pipeline to small distributed dispensing station
- Added Cryogenic H<sub>2</sub> trucks option for large dispensing station

### **Terminal**

- 1 to 1 ratio of terminal to remote plants
- Incorporated 5-days of bulk H<sub>2</sub> storage & 10% Liquefier for outages
- Added terminals for mixed-mode delivery from regional plants
- Dispensing
  - Introduce component costs for DCF analysis
  - Match storage & compressors to delivery method
  - Incorporated technology improvements in 2020

**Process flow diagrams were developed for infrastructure options and the** appropriate size and cost was attributed to each component in a particular pathway. 17 May 2007 Doc ment review

## **Model Improvements**

| Feature                                                | H <sub>2</sub> Sim 1.0<br>"Old"                                     | HyPro<br>"New"                                                                                                                                   |  |
|--------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pathways in Each Year                                  | One pathway built each year                                         | Multiple pathways allowed each<br>year                                                                                                           |  |
| Delivery Evolution                                     | Delivery method is fixed to production plant                        | <b>Prod. plant can change delivery</b><br><b>methods</b> (e.g. Central plant that trucks H <sub>2</sub><br>initially, then switches to pipeline) |  |
| Stranding                                              | Entire pathways                                                     | Strands individual portions (e.g. Prod., Term., Del., Disp.)                                                                                     |  |
| Dispensing Stations<br>Build-Out                       | Disp. stations capacity = Prod.<br>Capacity, all built in same year | Dispensing stations built as<br>required by demand                                                                                               |  |
| Delivery & Dispensing<br>Cost Algorithm                | Lookup tables of H2A data                                           | Discounted Cash Flow                                                                                                                             |  |
| Pipelines                                              | Optimized Ring Structure used<br>in HDSAM (Rev. 22 Apr 06)          | Minimum Spanning Tree Approach<br>as suggested by UC Davis                                                                                       |  |
| Trucking Distances                                     | Lookup tables populated with<br>city-specific H2A data              | Average Manhattan Distance for<br>inner city travel distances                                                                                    |  |
| CO <sub>2</sub> Emissions (for CO <sub>2</sub><br>tax) | None                                                                | Included                                                                                                                                         |  |
| Carbon Capture and Sequestration (CCSD)                | H2A Costs (Capture Only)                                            | Detailed Model based on UC Davis<br>Studies                                                                                                      |  |



### Difference in cost projections for Distributed SMR means several options are competitive.

Directed Technologies, 17 May 2007 DOE Merit Review



- City of Choice: Los Angeles
- DOE Demand Scenario 2 for LA
  - Demand reaches 15% of maximum by 2025, maximum by 2050
- Initially city must have 40 dispensing stations
- Vary utilization of pathways with increasing penetration
- Held feedstock prices constant at 2005 values
- Coal Production facilities must have CO<sub>2</sub> Sequestration
- Evaluate all pathways throughout the analysis period, 2012 2050
- Technology jumps in compression and storage occur in 2020
- Cold Compressed Gas Trucks [CryoGT] are available in 2020
- Pipelines [PL] are available in 2025

## **Baseline Case**





- If Optimistic 1.5 TPD SMR is available it is the lowest cost option after 2017.
- If Pessimistic 1.5 TPD SMR exists the build out is:

Existing H<sub>2</sub> (2012)  $\rightarrow$  1.5 TPD SMR (2017)  $\rightarrow$ 

Central SMR + Liquid Truck (2022) → Central SMR + Pipeline (2026)

In an unrestricted market, the cost of the 1.5 TPD Natural Gas SMR option will determine which infrastructure is built.



| Parameters Explored                     | Baseline Value                          | Sensitivity                                    | Comparison to<br>Baseline Results                                      |
|-----------------------------------------|-----------------------------------------|------------------------------------------------|------------------------------------------------------------------------|
| Distributed SMR Capital Cost            | H2A Installation<br>Costs (Opt)         | ~140% (Referred to as Pessimistic)             | Shown on previous slide                                                |
| Emissions Tax [\$/ton CO <sub>2</sub> ] | \$0                                     | \$10, \$50, \$100                              | See results                                                            |
| Sequestration & Renewable<br>Mandates   | None                                    | Beginning in 2020,<br>2032, 2040               | See results                                                            |
| Entry date of Pipeline into market      | 2025                                    | 2005                                           | Build out unchanged<br>(Yearly demand increase insufficient<br>for PL) |
| DOE Transition Scenario 1               | 15% in 13 yrs                           | 5.79% in 10 yrs                                | Build out unchanged                                                    |
| IRR                                     | 10%                                     | 20%                                            | Build out unchanged                                                    |
| Variable Feedstock                      | EIA AEO Table<br>(Constant 2005 Values) | EIA AEO Table                                  | COAL with PL in 2043                                                   |
| Location of Biomass Plant               | 350 mi. from city<br>limits             | 60 mi. from city limits                        | Baseline unchanged, (Cost<br>of Bio+PL < Pessimistic 1.5 TPD<br>SMR)   |
| CA Regional Feedstock Pricing           | EIA AEO Table<br>(Constant 2005 Values) | NG: 80% EIA<br>Coal: 86% EIA<br>Elec: 150% EIA | Existing Capacity with LT<br>> SMR (Opt) in 2012                       |



Directed Technologies, Inc. 17 May 2007 DOE Merit Review

[\$/kg H<sub>2</sub>]

CO<sub>2</sub> [\$/kg H<sub>2</sub>]

# **2020 Renewables Mandate**



• 2020 Renewables Mandate:

Existing + Liquid Truck  $\rightarrow$  1.5 TPD SMR (Opt)  $\rightarrow$ 

1.5 TPD Ethanol → Biomass + Pipeline → Nuclear + Pipeline

# With a renewable mandate, Distributed Ethanol could play an interim role at low demands.

## **Los Angeles Infrastructure Costs**



Mandates increase the total infrastructure cost. Earlier implementation more costly than delayed mandates.

Directed Technologies, Inc. 17 May 2007 DOE Merit Review

## **Future Work, FY07**

### • Model upgrades

- Update database with latest HDSAM Dispensing parameters
- Incorporate manufacturing learning curves
- Evaluate 3.0 TPD Distributed Stations

### • Further sensitivity analyses

### Analyze different scenarios

- Run model on other lighthouse cities such as New York
- Evaluate DOE Transition Scenario 1 & 3 in these cities

### Document results

- Write analysis report
- Identify incentives required to meet various DOE cost targets
- Suggest to DOE areas of further research



## Summary

### • Relevance:

- Analysis is important to the planning of the H<sub>2</sub> transition and useful for making decisions on which options are most likely to succeed.
- Approach:
  - Calculate an objective cost function which is evaluated regularly to determine build out
- Technical Progress & Accomplishments:
  - DCF calculation of complete pathway, sensitivity studies has lead to H<sub>2</sub> drivers

#### • Infrastructure Drivers:

- Capital Cost of Forecourt Stations
- Feasibility of pipelines in the future
- CO<sub>2</sub> Policies
- Feedstock Prices (Ethanol, Natural Gas)
- Future Work:
  - Analyze other demand scenarios
  - Model other cities
  - Suggest areas of further research



# **Other Results**





| Feedstock                     | \$/GJ   | Unit Cost            | Sites used      |
|-------------------------------|---------|----------------------|-----------------|
| <b>Commercial Natural Gas</b> | \$8.78  | \$9.26/MMBtu         | Distributed     |
| Industrial Natural Gas        | \$6.27  | \$6.61/MMBtu         | Remote Central  |
| Coal (Central)                | \$1.22  | \$31.90/ton (metric) | Remote Central  |
| Coal (Regional)               | \$0.78  | \$20.50/ton (metric) | Remote Regional |
| Biomass                       | \$2.56  | \$40/ton             | Regional        |
| Ethanol                       | \$13.27 | \$1.07/gal           | Distributed     |
| <b>Commercial Electricity</b> | \$22.67 | \$0.082/kWh          | Distributed     |
| Industrial Electricity        | \$15.41 | \$0.056/kWh          | Central         |

- Baseline case is evaluated with constant feedstock price to more clearly visualize trends.
- Variable feedstock prices considered in a sensitivity analysis.



Directed Technologies, Inc. 17 May 2007 DOE Merit Review

Subsystem schematics available for all 7 terminals.

## What about smaller stations?





• Costs of 1.5 TPD and 3.0 TPD are similar but with 1.5 TPD stations you get better coverage.

## What if pipelines were available sooner?



- If Optimistic 1.5 TPD SMR is achievable it is the lowest cost option after 2017.
- The demand is not sufficiently high until 2023 for pipelines to be competitive with next lowest option, Pessimistic 1.5 TPD SMR