

... for a brighter future

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC Hydrogen Quality Issues for Fuel Cell Vehicles DOE Hydrogen Quality Working Group: Activities and Progress

Romesh Kumar & Shabbir Ahmed Argonne National Laboratory May 17, 2007

Project ID # AN6

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start date: FY 2006

Project end date: Open

Percent complete: N/A

Barriers

- B. Stove-Piped/Siloed
 Aanalytical Capabitlity
 - Segmented resources
- D. Suite of Models and Tools
 - Macro-system models

Budget

Funding, FY 06: \$425 K

Funding, FY 07: \$435 K

Partners/Collaborators

- OEMs, energy companies, National Laboratories
- Project management: Argonne

Objectives

- Develop a process to determine hydrogen quality requirements for fuel cell vehicles, based on life-cycle costs
 - identify how fuel quality influences the life-cycle costs of the various components of the overall "hydrogen system"
 - develop models to evaluate the effects of fuel quality on the costs of the hydrogen system components
- Identify information gaps and the R&D needed to fill those gaps (along with who/how best to conduct that R&D)

These objectives are being addressed by the DOE Hydrogen Quality Working Group (H2QWG)

Makeup of the H2QWG

- DOE Hydrogen Program's Technology Development Managers from the various teams: Fuel Cell, Hydrogen Storage, Production & Delivery, Systems Analysis, Codes & Standards, Cross-Cutting
- U. S. automobile companies and fuel cell developers: DaimlerChrysler, Ford, General Motors, UTC Power
- Energy companies: BP, Chevron, ConocoPhillips, ExxonMobil, Shell
- National Laboratories Argonne, Los Alamos, National Renewable Energy Laboratory

Argonne is helping to coordinate the activities of the H2QWG

Approach

- Develop a process based on the cost and energy usage over the life-cycle of the FCV
 - assess influence of fuel quality on various components of the "hydrogen system"
 - production
 - purification
 - use in fuel cells
 - analysis and quality verification.
 - develop models to quantify life-cycle costs of hydrogen system components.
 - estimate the relationships between the impurity level and the \$/mile or some similar cost measure

Develop a roadmap for the process

Contaminant Level, ppm

H2QWG activities include roadmap development, information gathering, and modeling

- Developed an initial "Framework" document to help define the work of the Group
- Held in-person meetings, 3 to 4 times a year, along with interim discussions by e-mail, telephone, etc.
- Focused on different issues at the different meetings, with input on specific issues by experts in the field
 - defined the scope of the problem and the scope of H2QWG activities
 - obtained input from fuel cell developers, gas suppliers, etc.
 - obtained input on gas analysis technologies, corresponding ASTM activities, costing methodologies
- Initiated a database on critically assessed relevant published literature
- Worked with model developers at Argonne and other organizations to help develop and validate performance and life-cycle cost models
- Provided frequent briefings and updates to various Tech Teams, others

Aim of the activities is to identify information gaps and develop cost analyses for the four components

The focus is on the near- to mid-term (to 2015)

- Production: only distributed (forecourt) production by
 - reforming of natural gas (ATR & SMR)
 - reforming of renewable fuels, e.g., ethanol (i.e., E-95 & E-85)
 - electrolysis (alkaline and PEM electrolyzers)
- Purification by:
 - pressure-swing adsorption (may be aided by TSA)
 - hydrogen-permeable membrane separators
- Use in fuel cell systems (considering only compressed gas onboard hydrogen storage):
 - performance/cost/durability impact of
 - active contaminants
 - inert (non-electrochemically active) contaminants
- Analysis and quality verification
 - available analytical technologies (mostly research laboratory)
 - standardized (commercially accepted) technologies

Example: Costs for SMR production and PSA purification

- Production by SMR
 - at 600,000 kg/day, H₂ cost is \$1/kg
 - at 1,500 kg/day, H₂ cost is \$2/kg
 - at 100 kg/day, H₂ cost range is \$3.50 to \$9.40/kg
- Purification by PSA
 - may add ~ 5-20% to cost of H_2
 - PSA cost = f(H₂ recovery, scale, process parameters, reformate composition,...)
 - H₂ recovery is sensitive to
 O₂ > N₂ >> CH₄ > CO
 - At smaller capacities, recovery fraction has a proportionately larger impact on operating and life-cycle costs

Courtesy : D. Papadias

Progress & Accomplishments Modeling the SMR/PSA production/purification path

The modeled system includes - S/C in reformer = 3.0 Reformate enters PSA with concentrations corresponding to 80 equilibrium at 435°C % PSA removes CO, CO₂, CH₄, H₂ Recovery in PSA, H₂S with activated carbon bed 60 Four bed system Assumed parameters 1000 kg/day 40 NG Cost – 7 \$/GJ • *S/C* = 3 (*in reformer*) 20 Pressures: Inlet = 150 psig Cost data from literature [1] assuming PSA outlet contained 10 ppm CO 0

[1] Weinert, J., "A Near-term Economic Analysis of Hydrogen Fueling Stations," MS Thesis, U. of California, Davis, 2005.

Progress & Accomplishments The PSA model shows that bed volume increases with tighter CO specifications

Courtesy : D. Papadias

Progress & Accomplishments The PSA model has been expanded to include

- Nitrogen in the list of impurities (CH₄, CO, CO₂, N₂) The inclusion of N₂ will impact the cost (PSA unit, ..., cost of H₂)
- Multi-bed capability (carbon + zeolite beds)
- Effect of H₂ adsorption on adsorbents
- Enthalpy balance (adsorbent + PSA wall + heat losses)

Summary of H2QWG activities and accomplishments

- Pulled together key stakeholder groups: government, OEMs, fuel cell developers, energy companies, national laboratories
- Met with industrial gas suppliers, gas purification vendors, and others, to begin gathering information on hydrogen purification costs
- Reviewed literature and helped develop models for fuel cell performance degradation due to type and concentration of hydrogen contaminants
- Prepared a comprehensive draft Roadmap; the appendices contain species-specific discussions on test data, effects on fuel cell performance and durability, effectiveness of H₂ purification methods, modeling, and R&D needs

Draft Roadmap Summary findings (preliminary)

- PSA technology can achieve most of the H₂ impurity guidelines proposed by SAE / ISO, but it may add 5-20% to the cost of H₂
- PSA is ineffective for removing helium
- There are some contaminants for which PSA's effectiveness has not been reported (e.g., formic acid)
- The proposed levels for CO₂, O₂, and inert gases may be overly restrictive
- Testing and analysis may be a very significant cost factor, both for certification and for control of hydrogen quality

Draft Roadmap Recommendations (preliminary)

- If stringent quality specifications are necessary, need better quantification of the cost and performance of PSA vs. H₂ quality to determine life-cycle costs
- Need better quantification of the cost and performance of fuel cells, and the costs of overcoming the deleterious effects of specific contaminants
- Need low-cost methods for gas sampling and analysis for certification and on-line quality control (and fuel quality regulation enforcement)

Future work

- Discuss and recommend R&D needs, priorities, processes, and timeframe
- Enable exchange and dissemination of technical information to DOE and stakeholders (e.g., species summaries, database, etc.)
- Compare model results (performance, cost) with industrial data / experience to assess information gaps
- Identify the key impact factors (cost, energy) in the "hydrogen system" from model results and industry experience
- Review developments and their impact on hydrogen quality decisions
 - fuel cell performance, engineering mitigation options
 - process and purification options
 - analytical methods
- Finalize Roadmap and support DOE projects towards improved models and experimental methods

Additional Slides

Roster of the H2QWG

AhmedShabbirAAndersonArleneDOArbuckleSheralForBalasubramanianBhaskarCCaseyEdwardConocoCollinsWilliamUTC	NL E/EE ord TX oPhillips		
AndersonArleneDOArbuckleSheralFeBalasubramanianBhaskarCCaseyEdwardConoceCollinsWilliamUTC	E/EE ord TX oPhillips		
ArbuckleSheralForBalasubramanianBhaskarCCaseyEdwardConocoCollinsWilliamUTC	ord TX oPhillips		
BalasubramanianBhaskarCCaseyEdwardConoceCollinsWilliamUTC	TX oPhillips		
Casey Edward Conoce Collins William UTC	oPhillips		
Collins William UTC			
	Power		
Davis Pat DO	DOE/EE		
Devlin Pete DO	DOE/EE		
Duffy Michael NF	NREL		
Garland Nancy DO	DOE/EE		
Garland Roxanne DO	DOE/EE		
Garzon Fernando LA	LANL		
Gupta Nikunj Sl	nell		
Joseck Fred DO	E/EE		
Kumar Romesh A	NL		
Manheim Amy DO	E/EE		
Milliken JoAnn DO	E/EE		
Mitchell George D	СХ		
Ohi Jim NF	REL		
Gregoire Padro Catherine LA	NL		
Paster Mark DO	E/EE		
Rockward Tommy LA	NL		
Satyapal Sunita DO	E/EE		
Simnick Jim E	3P		
Steele Mike G	GM		
Stetson Ned DO	E/EE		
Stroh Ken LA	NL		
Thomas George E	E		
Gromis Adam Ca	FCP		

For Information (Tech Team Co-Leads, BPG,							
Austgen	Dave	Shell					
Curry-Nikansah	Maria	BP					
Freeman	Scott	DCX					
Jorgensen	Scott	GM					
Kaufman	Joe	ConocoPhillips					
Parks	George	ConocoPhillips					
Roessler	David	GM					
Rogers	Jerry	GM					
Schneider	Jesse	DCX					
Smith	Brad	Shell					
Tran	Doanh	DCX					
Tunison	Gene	ExxonMobil					
Watkins	Matt	ExxonMobil					
Yoshida	Phyllis	DOE/EE					
Zalesky	Rick	ChevronTexaco					

Hydrogen purification drivers (PSA)

Courtesy: Balasubramanian, B., April 5, 2006, Washington DC

Species	Adsorption Force	ISO TC 197 WG 12 (14687) Draft Spec	ATR Mol %	Purification Ratio for ATR	SMR Mol %	Purification Ratio for SMR	OVERALL EFFECT
Helium (He)	Zero	100 ppm (total inert)	500 ppm	5	500 ppm	5	NOT POSSIBLE
Hydrogen (H ₂)	Weak	99.99%	40-45%		75-80%		Impacts PSA recovery & Capital Cost
Oxygen (O ₂)		5 ppm	50 ppm	10	-	-	Impacts PSA recovery & Capital Cost
Argon (Ar)		100 ppm (total inert)	500 ppm	5	500 ppm	5	Impacts PSA recovery & Capital Cost
Nitrogen (N ₂)		100 ppm (total inert)	34-38%	3800	1000 ppm	10	Impacts PSA recovery & Capital Cost
Carbon Monoxide (CO)		0.2 ppm	0.1 -1 %	50000	0.1-4%	200000	Impacts PSA recovery & Capital Cost
Methane (CH ₄)		2 ppm (incl THC)	0.5 – 2%	10000	0.5 – 3%	15000	Impacts PSA recovery & Capital Cost
Carbon Dioxide (CO ₂)		2 ppm	15-17%	85000	15 -18%	90000	Relatively easy to remove
Total HC's	↓	2 ppm (incl CH4)	0.1 %	500	0.5%	2500	Relatively easy to remove
Ammonia	Strong	0.1 ppm	Low ppm		Low ppm		Relatively easy to remove
Total Sulfur	Strong	0.004 ppm					Relatively easy to remove
Halogenates	Strong	0.05 ppm					Relatively easy to remove
Water (H ₂ O)	Strong	5 ppm	Dew Point		Dew Point		Relatively easy to remove

Progress & Accomplishments Data are being sought from commercial sources for model validation

- For pressure swing adsorbers
 - H₂ recovery and H₂ cost = function (contaminant, level, plant capacity, P, …)
- For fuel cells
 - performance loss = function (contaminant, level, Pt loading, current density, T, P, duration of exposure, ...)
 - cost both as fuel cell cost (including durability) and as additional hydrogen consumption cost
- For hydrogen quality verification
 - analysis cost = function (contaminant, detection limit, type and frequency of analysis,...)

