

GREET WTW Analysis of Fuel-Cell Vehicles with Different Hydrogen Production Pathways

Michael Wang and Ye Wu Center for Transportation Research Argonne National Laboratory May 17, 2007

AN-7

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: Oct. 2002
- Project end date: continuous
- Percent complete: Not applicable

Budget

- Total project funding by DOE: \$1.2 million through FY07
- Funding received in FY06: \$200k
- Funding for FY07: \$450k

Barriers of Systems Analysis Addressed

- Inconsistent data, assumptions, and guidelines
- Suite of models and tools
- Unplanned studies and analyses

Partners

- H2A team
- PSAT team
- NREL

Objectives

- Expand and update the GREET model for hydrogen production pathways and for FCV improvements
- Conduct well-to-wheels (WTW) analysis of hydrogen FCVs with various hydrogen production pathways
- Provide WTW results for OFCHIT efforts on the Hydrogen Posture Plan and the MYPP
- Engage in discussions and dissimilation of energy and environmental benefits of hydrogen FCVs

Approach

- Obtain data for hydrogen production pathways
 - Open literature
 - H2A simulation results
 - Process engineering simulations with models such as ASPEN
 - Contact with hydrogen producers
- Obtain data for hydrogen FCVs
 - Open literature
 - PSAT simulations
 - Data of available FCV models
- Expand and update the GREET model
- Conduct WTW simulations with GREET
- Analyze and present WTW results

Argonne Has Been Developing The GREET Model Since 1995

Key GREET features

- Emissions of greenhouse gases
 ✓ CO₂, CH₄, and N₂O
- Emissions of six criteria pollutants
 ✓ Total and urban separately

 \checkmark VOC, CO, NO_x, SO_x, PM₁₀ and PM_{2.5}

- Energy use
 - ✓ All energy sources
 - ✓ Fossil fuels (petroleum, NG and coal)
 - ✓ Petroleum
 - ✓ Coal
 - ✓ NG
- GREET and its documents are available at http://www.transportation.anl.gov/software/GREET/index.html

- ✓ North America, Europe, and Asia
- The most recent GREET1.7 and GREET2.7 models were released in Feb. 2007

GREET1.7 Has Developed New Simulation Features

An improved Graphic User Interface (GUI) program makes GREET user-friendly

A GREET 1.7	A Scenario and Fuel Pathway Selections	Present trans inconstant of a line point spin and a line point spin all the li
CDEET -	List of Years to be Simulated Fuel Pathway Groups	The second se
GREET1./	1990 1995 2000 2005 2010 2015 2020	
	1992 1997 2002 2007 2012 2017 1993 1998 2002 2006 2013 2018 1993 1998 2002 2006 2013 2018	B Composition First Note
	Vehicle Type	MO 6/01 6/02 6
	Patterge Cas Dedecel Dedecel Extraction	
New Session	C Light Duty Trucke 2	Distance Output Advis
Spen Existing Session	Stochastic Simulation Options (Single Year Simulation Only)	
	No, I do not want to run Stochastic Simulations No, I do not want to run Stochastic Simulations	
NATIONAL LABORATORY	Continue >>	A state of the sta

- GREET1.7 can simulate a target year or multiple years between 1990 and 2020
 - Previous versions were based on two snap-shot simulations: near term vs. long term
 - Technology advancement over time is established with time-series look-up tables

0.069 0.069	
5-year period	LDGV: NOx
1990	1.285
1995	0.656
2000	0.300
2005	0.141
2010	0.069
2015	0.069
2020	0.069

٠

71.50% 71.50%	
5-year period	G.H2 Production Efficiency (Central, NA-NG, no export)
1990	68.0%
1995	69.0%
2000	71.0%
2005	71.5%
2010	71.5%
2015	72.0%
2020	73.0%

U.S. mix: Average					
	1.7%	20.6%	50.2%	17.7%	9.8%
5-year	Residual				
period	Oil	Natural Gas	Coal	Nuclear	Others
1990	4.2%	12.3%	52.5%	19.0%	12.0%
1995	2.2%	14.8%	51.0%	20.1%	11.9%
2000	2.9%	15.8%	51.7%	19.8%	9.8%
2005	1.7%	18.4%	50.3%	19.4%	10.2%
2010	1.7%	20.6%	50.2%	17.7%	9.8%
2015	2.5%	22.7%	48.6%	16.6%	9.6%
2020	1.9%	24.2%	49.2%	15.4%	9.3%

New stochastic simulation codes were developed within GREET to address
 uncertainties

Hydrogen Production Pathways in GREET

Two Major Efforts Were Conducted for WTW Analysis of Hydrogen FCVs

- WTW analysis of energy use and greenhouse emissions for the following selected H2 production pathways for DOE's Hydrogen Posture Plan
 - ✓ Distributed production of GH2 from North American natural gas (NA NG) via steam methane reforming (SMR) (2005 and 2015)
 - ✓ Central production of GH2 from cellulosic biomass via gasification (2005 and 2015)
 - ✓ Central production of GH2 from coal via gasification with CO2 sequestration (2005 and 2015)
 - ✓ Distributed production of GH2 from wind/grid electricity via electrolysis (2005 and 2015)
 - ✓ Central production of GH2 from wind/grid electricity via electrolysis (2005 and 2015)
 - ✓ Central production of GH2 from nuclear via thermo-chemical water cracking (2030)
- Potential energy and greenhouse gas emissions effects of hydrogen production from coke oven gas in U.S. steel mills

Mass and Energy Balance Data for Hydrogen Production Are from H2A Simulations by NREL

Fuel Economy of Vehicle Technologies Was Simulated with The PSAT Model by Argonne

- PSAT was used to estimate vehicle fuel economy for a typical midsize passenger car platform
- PSAT results were adjusted to reflect on-road MPG

Adjusted on-road fuel economy, mpgge

Well-to-Wheels Results: Fossil Energy Use (Near Term)

Well-to-Wheels Results: Fossil Energy Use (Mid Term)

Well-to-Wheels Results: Petroleum Energy Use (Near Term)

Well-to-Wheels Results: Petroleum Energy Use (Mid Term)

Well-to-Wheels Results: Greenhouse Gas Emissions (Near Term)

Well-to-Wheels Results: Greenhouse Gas Emissions (Mid Term)

Potential Hydrogen from Coke Oven Gas

Coke Oven Operations in the United States

- Hydrogen from coal-to-coke process could fuel ~1 million FCVs/yr.
- Industry demonstrated this method in Japan.

Estimated Annual COG-Based H2 Production by U.S. Regions, metric tons/Year

	2004	2005	Share (Based on 2005 Data)
PADD I	122,259	120,812	33%
PADD II	211,175	208,675	57%
PADD III	37,048	36,610	10%
Total	370,482	366,097	100%

Coal-to-Coke Process Flow Diagram

Recovery of Hydrogen from Coke Oven Gas

Scenario 1 (S1):

- Based on relative energy efficiencies of coking process, the PSA system and the delivery systems.
- COG is treated as a <u>co-product</u>.
- Energy use and CO₂ emissions from coking process are allocated between coke and COG.

Scenario 2 (S2):

- Based on the energy use of the PSA and delivery systems.
- COG is treated as a <u>byproduct.</u>
- Energy accounting for the COG-to-hydrogen production pathway starts with the energy content of the COG.

Scenario 3 (S3):

Based on the energy use by the PSA unit and the amount of supplemental natural gas used to makeup for BTU withdrawal from separated hydrogen.

Well-to-Wheels Results of Hydrogen From COG: Fossil and Petroleum Energy Use

Vehicle Fuel Efficiency, mpgge

Gaso. ICE HEV	Gaso. HEV	Diesel HEV	FCV
24	34	39	57

Notes:

Fuel Efficiencies based on mid size car.

The fuel efficiencies were determined with the ANL PSAT model.

Notes

• The distributed reforming cases are based on a capacity of 1,500 kg/day.

- The central coal gasification case has carbon sequestration.
- The central coal case assume hydrogen at the plant gate is compressed and distributed to the fueling stations by pipeline.
- The dispensing pressure for the hydrogen cases is 5,000 psi.
- The hydrogen recovered from COG is compressed and distributed to the fueling stations by pipeline.

Well-to-Wheels Results of Hydrogen from COG: Greenhouse Gas Emissions

<u>Notes</u>

• The distributed reforming cases are based on a capacity of 1,500 kg/day.

•The central coal gasification case has carbon sequestration.

- The central coal case assume hydrogen at the plant gate is compressed and distributed to the fueling stations by pipeline.
- The dispensing pressure for the hydrogen cases is 5,000 psi.

• The hydrogen recovered from COG is compressed and distributed to the fueling stations by pipeline.

Future Work

- Expand GREET to include two hydrogen delivery options
 - Liquid hydrogen trucks
 - Tube trailer trucks for gaseous hydrogen
- Update existing hydrogen production pathways with H2A results
- Examine fuel economy potential of hydrogen FCVs and other advanced vehicle technologies with PSAT
- Start to examine water requirements of hydrogen production and production of other competing fuels
- Provide assistance to OFCHIT's analysis efforts

Summary

- WTW analysis is an integral part of examining energy and environmental effects of hydrogen FCVs and other vehicle/fuel technologies
- The GREET model has become a standard WTW analysis tool for stakeholders to use
- H2 FCVs generally achieve significant reductions in energy use and GHG emissions
- Hydrogen recovery from coke oven gas provides another hydrogen source in the portfolio of hydrogen production options, especially in the early stages of market transformation