Hydrogen Technology and Energy Curriculum (HyTEC)

Jim Zoellick Schatz Energy Research Center Humboldt State University May 18, 2007

This presentation does not contain any proprietary, confidential, or otherewise restricted information.

Project ID #ED1

HyTEC Collaborators

Lawrence Hall of Science University of California, Berkeley

SCHATZ ENERGY RESEARCH CENTER

Overview

Timeline

- September 1, 2004 start
- Phase One 100% complete
- Currently under 2nd no-cost 18-month extension

Budget

Total funding: \$3,015,955 DOE share: \$2,399,150 Contractor share \$616,805 Funding FY04: \$410,395 Funding FY05: none Funding FY06: none Funding FY07: \$300,000 DOE share: \$150,000 (pending) Contractor share \$150,000

Barriers addressed

- Lack of Awareness
- Institutional Barriers and Access to Audiences

Partners

- LHS, UC Berkeley
- SERC, Humboldt State
- AC Transit
- Filmsight Productions
- Lab-Aids, Inc.

Goals

- Educate high school students and their teachers about:
- Scientific and technological basis for hydrogen and fuel cells
- R&D currently underway to implement safe and effective hydrogen and fuel cell transportation demonstration programs
- Current challenges and potential promise of a hydrogen economy in the broader context of energy use and resources

Equipment Testing at Humboldt State

Objectives

- Develop, field test in national centers, revise, publish, and disseminate three curriculum modules and integrate hydrogen and fuel cells into existing LHS high school materials.
- Develop and implement a professional development plan for teachers who will use the materials.
- Develop a model for collaboration among school districts, informal science centers, university scientists, local transportation agencies, and other leaders in the field.
- Disseminate the materials to a broad national audience.
- Evaluate the quality and effectiveness of the curriculum materials and professional development strategies.

Approach: The Curriculum Envisioned

- Part of the SEPUP module series developed at UC Berkeley's Lawrence Hall of Science
 - Issue-oriented science curriculum
 - Twelve modules currently available
 - Recognized for balanced treatment of issues
 - Marketed nationally by Lab-Aids, Inc.
 - Disseminated through numerous national, state, and regional workshops/presentations
 - Used with pre-service teachers in many schools of education
- Integrated into SEPUP's 2-year high school science program (funded by NSF)

Approach: A SEPUP Instructional Module

"Investigating Energy from the Sun" Module

- Complete materials kit
 - Equipment
 - Consumables (chemicals)
 - Transparencies
- Teacher's Guide
 - Student Masters
 - Transparency Masters
 - CD of test and masters
- Web site for support, links to other resources, extensions

Objectives: Project Period One

The plan was modified to fit a greatly reduced funding level and uncertainty of future funding

- Prepare a draft of one module that includes the most important ideas related to hydrogen and fuel cells
 - Related to National Science Education Standards and other standards
 - Able to fit into a typical high school chemistry and/or physical science course
- Pilot the module in classrooms
- Revise to prepare a version for piloting by expert teachers

Approach & Progress

- (Complete) Draft module outline (10 activities), correlate to National Science Education Standards
- (Complete) Teachers, curriculum developers, and scientists on the team review and revise
- (Complete) Draft core activities & assessments, develop kit materials, including student fuel cell & electrolyzer
- (Complete) Teacher advisors review activities
- (Complete) Developers pilot core activities in Northern California classrooms
- (90% Complete) Collect teacher, student, and expert feedback
- (90% Complete) Revise based on feedback
- Team science centers, scientists, and schools to create a collaborative model for hydrogen and fuel cell education

Approach

The curriculum incorporates numerous chemistry topics, including:

- Electrochemistry
- Oxidation-reduction
- Half reactions
- Balancing equations
- Heats of reaction
- Bond energies
- Energy transformations

Introductory Lecture at Arcata High

Five curriculum activities have been fully developed, tested, and revised, including:

- 1. Energy for Transportation students examine trade-offs of various fuel/vehicle combinations
- 2. Fuels students examine and compare various fuels (octane, methane, hydrogen, ethanol), they determine the heat of combustion, energy density, and CO₂ emissions for these fuels
- 3. Obtaining Hydrogen through Electrolysis - hands-on lab, students generate hydrogen and examine the required energy input, stoichiometry, and electrochemistry involved in the process

Classroom Trials at Emery High

4. Putting a Hydrogen Fuel Cell to Work - hands-on lab, students generate H2 and O2 via electrolysis, use a single cell fuel cell to perform work, measure fuel cell efficiency

Classroom Trials at Arcata High

Fuel Cell Redox Model

5. Modeling a Fuel Cell Redox Reaction students use model pieces to explore the fuel cell redox reaction

A hands-on fuel cell and electrolyzer laboratory kit has been developed, tested, & revised

Supply

Classroom curriculum trials have been conducted at:

- Berkeley High School
 3 chemistry classes
 2 environmental science classes
 140 students
- Emeryville High School
 2 chemistry classes
 50 students
- Arcata High School
 4 chemistry classes
 100 students

Emery High School

We have tested the curriculum with a diverse group of students (e.g., urban, rural, multiple socio-economic classes).

Emery High School

Arcata High School

A Stack-in-a-Box® has been produced for use by the Lawrence Hall of Science and in SF Bay Area classrooms.

Stack-in-a-Box® Demo

Stack-in-a-Box®

Field Trip - Emeryville High students ride an AC Transit fuel cell bus.

Two video segments have been produced using teenage actors.

1. A "teaser" introduction.

Value of the issue-oriented approach

- Demonstrates to students the relevance of their science education
 - Chemistry they are learning in class relates to interesting and exciting real world problems
 - The skills they are learning can enable them to work on solving some of the worlds energy and pollution problems
- Issue-oriented science motivates students to learn science, continue science education, consider careers in science and technology, and have positive attitudes toward science.

Student and teacher responses

- Students
 - "It was really fun."
 - The fuel cells were really cool."
 - This is a valuable part of a curriculum, and should be taught in every school in the nation."
- Teachers
 - Appropriate for either chemistry or environmental science
 - Teacher reviewer requested an activity to use in her environmental science classroom in Seattle area
 - Arcata High School purchased 15 fuel cell / electrolyzer kits and two chemistry teachers have integrated the fuel cell and electrolyzer labs into their curriculum
 - Emery High School teacher has attended multiple conference presentations and wants to continue to be involved

Presentations

- "Teaching Chemistry with Hydrogen Fuel Cells," California Science Teacher's Association Conference, October 21, 2006 San Francisco, CA reached about 50 teachers
- "Teaching Chemistry with Hydrogen Fuel Cells," National Science Teacher's Association Conference, March 31, 2007 St, Louis, MO reached about 40 teachers

Future work

- More classroom trials in May '07
- Next round of curriculum revisions
- Develop flexible model allowing use of complete sequence or parts of sequence
- Finalize and prepare curriculum activities for publication
- Teacher training workshops (Summer '07)
- Development of interactive, web-based tool (fuel cell simulation, video clips, additional resources)
- Development of fuel cell kit into production level product that can be widely disseminated
- Continue to present to teachers (NSTA '08)
- Field test materials in limited number of sites outside Northern California

Summary

- Goal To develop an NSES correlated hydrogen and fuel cell curriculum for high schools and a model to disseminate it nationwide
- Project scope was reduced due to funding shortfalls
- Substantial commitment of outside funds has allowed the project to continue
- A core curriculum module with laboratory activities and equipment has been successfully developed and tested
- With remaining funding we plan to finalize the curriculum module, prepare it for publication, develop a production level laboratory kit, conduct teacher trainings, and begin to market the curriculum nationally

