

Improved Membrane Materials for PEM Fuel Cell Applications

USM/DOE Cooperative Agreement No. **DE-FG36-06GO86065**

Robert B. Moore and Kenneth A. Mauritz

The University of Southern Mississippi May 16, 2007

Project ID # FC11

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- \square Project start date: 6/1/2006
- □ Project end date: 11/30/07
- □ Percent complete: 65%

Budget

- □ Total project funding: \$618,750
 - DOE share: \$495,000
 - Contractor share: \$123,750
- Funding received in FY06:\$228,066
- □ Funding for FY07: \$266,935

Partners

u USM only

Barriers

- □ A. Durability
 - Mechanical integrity, chemical stability, cycle stability, morphological stability
- **B.** Cost
 - Membrane/MEA manufacturing
 - Alternative membrane materials

C. Performance

 Power density, electrode/membrane interface, catalyst utilization, low/high temp conductivity

Targets

- Durability: 40,000 hrs (stationary)
 5000 hrs (automotive)
- □ Cost: \$20/m² (Alternative materials)
- Performance: > 0.1 S/cm amb. to 120 °C; 0.01 S/cm -20 °C

Objectives

- Overall Goal: To ascertain and integrate critical structure-property information in order to develop methods that lead to significant improvements in the durability and performance of PEMFC membrane materials. Specific objectives include:
 - Provide fundamental information regarding the origins of chemical and morphological degradation during accelerated chemical attack and PEMFC operation,
 - Investigate the effect of modifications in membrane and MEA processing parameters on performance and durability, and
 - Evaluate the role of controlled morphological features and reinforcing structures on membrane performance and durability.
 - In addition, we will explore the performance and durability of new hydrocarbon-based membrane materials as alternatives to the benchmark perfluorosulfonate ionomers.
- Focus in 2006-07: Investigations of membrane and MEA processing parameters on performance and chemical durability; use of dielectric spectroscopy to probe molecular motions impacted by degradation.

Approach

- 18-month project focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical, and morphological durability, as well as the development of new membrane systems with alternative chemical structures and compositions.
 - 80% effort focused on perfluorosulfonate ionomer membrane materials.
 - 20% effort focused on alternative hydrocarbon membranes
- **Task 1.0:** Acquisition and installation of equipment (complete)
 - Two fuel cell test stations
 - Dynamic mechanical analyzer
- **Task 2.0:** Development of characterization methods to evaluate the effects of degradation and origins of performance characteristics (75% complete)
 - Probes of chemical structure, morphology (over many length scales), molecular mobility, mechanical properties
 - As-received membranes used as controls
- **Task 3.0:** Modifications of Nafion[®] Membranes and MEAs (60% complete)
 - Membrane fabrication procedures
 - Post-processing treatments
 - MEA fabrication procedures
 - Inorganic modification of membranes
- **Task 4.0:** Membrane Durability Studies (35% complete)
 - Accelerated chemical attack (Fenton's reagent)
 - Fuel cell testing vs. time and/or conditions
- **Task 5.0:** Evaluation of Alternative Membrane Systems (10% complete)

Technical Accomplishments/ Progress/Results

- Our previous studies of chain dynamics in PFSIs during thermal treatment provide important insight related to processing-property relationships.
- Thermal treatment of H⁺-form membranes may impact chemical stability.
- Control of electrostatic interactions and solvent-polymer interactions during solution-processing of membranes and MEA processing yields significant improvements in PEMFC performance.
- Dielectric spectroscopy has been used to demonstrate that relaxation time distributions are related to MWD, thermal history, and low level moisture content.
- Hydrophilic silicate nanoparticles have been successfully incorporated into the polar domains of Nafion[®].

Solvent Stability of Thermally-Annealed Dispersion Cast Nafion[®] NRE 212CS Membranes

Membranes in Boiling MeOH

Sample	Condition	Water Uptake, λ	% Soluble in 50:50 EtOH/Water	Stability in Stirred MeOH (60 °C)	Stability in Stirred MeOH (60 °C) Na ⁺ -form Films	
AR 112	As-received	17	1.3	Stable	Stable	
NRE 212CS	As-received	43	7.3	Disintegrates < 1 min.	Disintegrates < 1 min.	
NRE 212CS	Annealed 175 °C with DMSO	15	1.9	Stable	Stable	
SP 2 mil	Cast from DMSO at 180 °C	51	2.3	Stable	Stable	
NRE 212CS	Annealed 100 °C	28	1.8	Disintegrates in 3 min.	Disintegrates in 3 min.	
NRE 212CS	Annealed 125 °C	26	1.8	Disintegrates in 5 min.	Disintegrates in 3 min.	
NRE 212CS	Annealed 150 °C	24	0.7	Disintegrates in 20 min.	Disintegrates in 5 min.	
NRE 212CS	Annealed 175 °C	16	0.6	Stable	Disintegrates in 5 min.	
NRE 212CS	Annealed 200 °C	15	0.4	Stable	Disintegrates in 5 min.	

□ As-received NRE 212CS membranes tend to disintegrate in boiling MeOH. □ Annealing at elevated temperatures (above the α -relaxation) improves solvent stability. T_{α} (H⁺) = 110 °C; T_{α} (Na⁺) = 220 °C □ Annealing has no effect at temperatures below the α -relaxation (i.e. Na⁺-form

□ Annealing has no effect at temperatures below the α-relaxation (i.e. Na⁺-form samples).

Effect of Thermal Annealing on the Crystalline Order in H⁺ and Na⁺-form NRE 212CS

	Percent	FWHM of	FWHM of
NRE212CS H+	Crystallinity	crystalline peak	Amorphous Peak
Unannealed	12.67	1.59	3.84
100C	13.78	1.58	3.78
125C	13.58	1.56	3.73
150C	11.82	1.50	3.77
175C	7.06	1.25	3.82
200C	6.56	1.32	3.78

□ Thermal annealing above T_{α} (H⁺-form) apparently increases crystalline order.

 Thermal annealing has no effect on crystalline order in Na⁺-form samples.

Effect of Membrane Thermal Treatment on PEMFC Performance

8

\square Thermal annealing above T_{α} significantly improves the order within the ionic domains, which consequently improves PEMFC performance.

AR112 = as-received (extruded) 2 mil 1100 EW Nafion[®] membranes; 5 cm² cell; Pt loading = 0.5mg/cm² on anode and cathode (decal method); H₂/O₂ stoich = 1.5/2.0; T_{cell} = 60 °C, T anode humidifier = 70 °C (100% RH), T cathode humidifier = 55 °C (80% RH).

	Dry	15hr F-	30hr F-	45hr F-	60hr F-	75hr F-	Dry wt after	
Samples	weight (g)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	HCl was h	% wt loss
H+ Unannealed	0.352	2.82	6.64	8.07	7.46	6.93	0.349	0.68
H+ 212CS 100C 1hr	0.345	3.29	7.12	8.15	7.32	6.98	0.342	0.80
H+ 212CS 150C 1hr	0.340	9.05	13.24	13.71	13.29	12.01	0.334	1.69
H+ 212CS 200C 1hr	0.344	28.08	31.16	30.04	28.54	27.87	0.295	14.08
Na+ Unannealed	0.340	5.92	6.58	6.12	5.96	5.16	—	
Na+212CS 100C 1hr	0.337	5.61	6.53	6.20	5.70	5.63	—	
Na+212CS 150C 1hr	0.356	5.95	6.72	6.39	5.68	5.35	—	_
Na+212CS 200C 1hr	0.347	7.16	7.24	6.45	5.86	5.46	_	

- **H**⁺-form samples progressively darken with annealing temperature and time.
- For the H+ samples, this thermal degradation apparently enhances susceptibility to chemical attack.
- No thermal degradation observed for ionized Nafion[®] (Na⁺-form), and the fluoride release remains relatively constant with annealing temperature.

Effect of Mixed Counterions Composition during Casting

□ Solution-processing above T_{α} (TBA⁺-form) improves PEMFC performance, relative to casting below T_{α} (Na⁺-form).

Solution processed Nafion[®] membranes (180 °C) 2 mil thick 1100EW with mixed TBA⁺ and Na⁺ counterions, reacidified in 4M Sulfuric acid in Methanol; 5cm² cell; Pt loading=0.5 mg/cm² on anode and cathode (decal method); H_2/O_2 stoich.=1.5/2; T_{cell} =60°C, $T_{anode humidifier}$ =70°C (100% RH), $T_{cathode humidifier}$ =55°C (80% RH)

rature

Effect of Membrane Casting Temperature (TBA⁺ and Na⁺ form Nafion[®])

 \square Casting above T_{α} (TBA+-form), PEMFC performance decreases with increasing temperature.

\square Casting below T_{α} (Na⁺-form), PEMFC performance increases with decreasing temperature.

Solution processed 2 mil thick 1100EW Nafion[®] membranes in Na⁺ form, reacidified in 4M Sulfuric acid in Methanol; 5cm² cell; Pt loading=0.5 mg/cm² on anode and cathode (decal method); H₂/O₂ stoich.=1.5/2; T_{cell}=60°C, T_{anode humidifier} =70°C (100% RH), T_{cathode humidifier} =55°C (80% RH)

Effect of Catalyst Ink Solvent Composition on PEMFC Performance (Catalyst-coated GDLs)

□ Free chains and large aggregates in the dispersion (used in the ink) yield relatively poor performance.

Optimum performance observed when aggregate size matches pore size in carbon particle supports.

AR112 = as-received (extruded) 2 mil 1100 EW Nafion[®] membranes; 5 cm² cell; Pt loading = 0.5mg/cm² on anode and cathode (ink painted on GDLs); H₂/O₂ stoich = 1.5/2.0; T_{cell} = 60 °C, T anode humidifier = 70 °C (100% RH), T cathode humidifier = 55 °C (80% RH); GDL: Toray TGP-H-090.

Dielectric Spectroscopy

 ε , ε " = storage, loss components of complex dielectric permittivity:

 $\varepsilon^* = \varepsilon^2 - i \varepsilon^2 f = \text{frequency} (10^{-3} - 10^9 \text{ Hz})$

- fast, accurate, vast range of characteristic time scales

A Powerful Diagnostic Tool₁₃

ε" vs. f and t '*response surface*' Nafion[®] NRE 212 acid films as received/cleaned

Curves spaced 10 °C
 increments from -20 to 200 °C

Characteristic Nafion[®]
 molecular motions occur along
 crests of 'hills' (peaks):

 β -relaxation with onset at -10 °C

 α -relaxation with onset at $\approx 80 \ ^{\circ}C$

What is the nature of these motions and how are they affected by degradation?

DS Real Time Studies of Membrane Drying

AR Nafion[®] NRE 212 at T = 70 ° C under N₂ with f-sweep iterations. A) after ~ 2.5h and B) ~15h of testing.

Data fitted to Havriliak-Negami eqn

(conditioned in 6.4%RH for 4d before testing)

 β Peak shifts to lower frequencies – longer relaxation time with dehydration

 α Peak is off-scale \rightarrow

Nafion[®] Degradation

- □ Four sample preparations:
 - \Box As-received cleaned (HNO₃ reflux, DI water soak, dried)
 - Degraded 75h w/ Fenton's Reagent—no post degradation treatment
 - Degraded 75h w/ Fenton's Reagent—washed with HCl
 - □ Placed in Fenton's reagent soln w/o H_2O_2 (iron only)
- □ Samples stored < 0.2% RH 4d prior to dielectric spectroscopic testing:
 - □ Part 1. Constant T = 70 °C for 7.5h w/ frequency sweep
 - Part 2. Temperature cycles from -130 to 200 °C in 10 °C temperature increments
- **D** Objectives:
 - □ Understand bound moisture and Fe⁺ ion incorporation
 - □ Understand/quantify Nafion[®] degradation

Dielectric Relaxation

- □ Spectra after drying 7.5h/70 °C in spectrometer
- □ Specimens degraded 75h, then cleaned w/ HCl
 - **Broader relaxation peak**
 - □ Resolved into 2 components
 - $\Box \text{ Increased } \tau_{max} = 1(2\pi f_{max})$
 - $\Box \rightarrow$ broadened distribution of molecular environments

Degraded vs Non-degraded Nafion[®]: Comparisons at 60 °C

Nafion[®] NRE 212 H⁺ films degraded in Fenton's reagent 75h vs. untreated film

Leach out low molecular weight (M) fragments during Fenton treatment \rightarrow average M increases

 $\tau \propto \, {
m M}^{
m a}$: Longer chains move slower

High temperature Nafion[®]/silicate Nanocomposite FC Membranes

- Monotonic increase in T_g with increase in silicate loading
- Side-chains trapped in silicate cages?

Inorganic Modification of Nafion Membranes: Effect of Water:TEOS Ratio

Inorganic Modification of Nafion Membranes: Effect of Water:TEOS Ratio

Future Work

- **D** Timeframe: May November 2007
- Characterize structural/physical changes after chemical degradation
 - Spectroscopic analysis, titration, extraction/characterization of soluble components
- Optimize morphological parameters for performance and durability
 - Membrane processing with tailored morphological control
 - Post-processing treatments for enhancement of stable morphology
- Optimize MEA preparation procedures for performance and durability
- Characterize performance and durability of organic/inorganic composites
- Complete synthetic procedures for new hydrocarbon-based PEMFC membranes

- Chemical and physical properties are significantly affected by thermal treatments. Annealing enhances solvent stability, but may compromise chemical stability in H⁺-form Nafion[®].
- Solution-processing conditions have a significant effect on membrane and MEA performance.
 - Likely to be related to morphology
 - Durability of enhancements must be evaluated.
- Broadband dielectric spectroscopy: powerful tool in characterizing molecular motions in Nafion[®] and chemical degradation.
 - Connection between relaxation time distribution and degraded molecular weight distribution
 - Spectra sensitive to Nafion[®] thermal history and low level moisture content
- Hydrophilic silicate nanoparticles successfully incorporated in polar domains of Nafion[®].