

NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

Peter Pintauro and Patrick T. Mather Case Western Reserve University Cleveland, Ohio 44106 May 2007

Project ID #FC14

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date 4/15/2006
- End date 4/15/2011
- Percent complete 20%

- Total project funding
 - DOE \$1,455,257
 - Contractor (CWRU) \$481,465
- Funding received in FY06, \$280,000
- Funding for FY07, \$296,620

Barriers

- High proton conductivity membranes at high T and low RH.
- Membranes with good mechanical properties.
- Membranes with low gas permeability.

Interactions

Eric Fossum Dept. of Chemistry Wright State University, Dayton, OH

Objectives

- Fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions.
 - Electrospun nm-size fibers of high ion-exchange capacity polymer that are vapor welded and imbedded in an uncharged polymer matrix
 - Addition of molecular silica to further enhance water retention
 - Employ the concept of capillary condensation for membrane water retention.

Plan and Approach – Proposed Membrane Morphology

Structure for NanoCapillary Network (NCN) membranes:

The electrospun sulfonated polymer fibers with/without molecular silica are interconnected by vapor welding and the inter-fiber spaces are filled by a nonconducting, gas impermeable polymer

Plan and Approach

> Task 1 Sulfonated Polymer Synthesis

- Different polymer IECs
- With and without molecular-level silica
- Polymer crosslinking studies
- Polymer characterizations

> Task 2 Electrospinning Process Development

- Creation of a fiber mat
- Fiber Welding Studies

> Task 3 Matrix Polymer Identification and Membrane Fabrication

- Identify an inert (uncharged) polymer
- Develop method for adding polymer to the fiber mat

>Task 4 Membrane Characterization

- Bubble point test
- Equilibrium water swelling as a function of T and RH
- Preliminary through-plane and in-plane conductivity at different T and RH
- Thermomechanical analysis
- Mechanical properties
- Oxygen permeability
- SEM and TEM micrographs of membrane cross sections
- Thermal analysis (DSC and TGA) of the sulfonated and non-sulfonated polymers

> <u>Tasks 5 Membrane</u> <u>Composition/Structure Optimization</u>

Year 1 Tasks

Prepared Sulfonated Polymers

- Sulfonated poly (ether ether ketone)
- Sulfonated poly (arylene ether sulfone)
- Prepare polymers of different ion-exchange capacity (IEC)

Electrospinning Process Development

- Fabricated fiber mats with a different average fiber diameter
- Increase the density of fibers in a mat
- Develop fiber welding strategies

Mat Characterization Studies

- Proton conductivity of the mat before inert polymer impregnation
- Thermal analysis of the mat (TGA and DMA)

Initial Impregnation Experiments

• Use of a solvent-less UV curable thermoset

Sulfonation of Poly(ether ether ketone) (PEEK)

Poly(ether ether ketone) was sulfonated at room temperature to a range of different ion-exchange capacities (IECs) using concentrated sulfuric acid.

Electrospinning used 1.6 mmol/g IEC sPEEK (room temperature waterequilibrated membrane conductivity of 0.06 S/cm)

Electrospinning of sulfonated Poly(ether ether ketone) (sPEEK)

Drum rotation speed: from 0 to 1800 rpm

Lateral reciprocation:

Travel is +/- 4cm from the center position of the

Electrospun Mat - 16 cm long, 8 cm wide and 50 µm thick after electrospinning for 10 hours; sPEEK (IEC 1.65) solution in DMAc.

Result: Large area mats with uniform fiber density were produced

Electrospun Fiber Diameter

550

600

650

12% mat density

Result: Fiber diameter can be control by solution concentration

Enhancement of Fiber Density in a Mat (heat treatment)

Optical microscope images in reflection

DMA study of the macroscopic orientation of electrospun fibers: Macroscopic orientation does not influence the shrinkage of the mat

Result: Thermal treatment near 200°C allows for significant mat shrinkage.

More on Enhancement of Fiber Density in a Mat

Use of oven

Mats were hung to avoid friction on the surface acting in opposite direction to shrinkage.

Use of laminator

A stack of the mat (in a Teflon frame) with two Teflon covers was passed through the laminator with controlled heating.

DOE Hydrogen Program

Sample	Initial Electrospun Mat (sPEEK IEC=1.65 mmol/g)	Densified Mat		
	Mat Density [%]	Heat Treatment	Mat Density [%]	
A	13.6	In oven at 200°C	42.4	
B	12.6		50.6	
C	12.8		37.7	
D	15.0	In laminator at 200°C	51.5	
E	14.7		42.5	
F	14.4		46.1	

Result: Thermal treatment increases the mat density by a factor of 3

Heat Treatment in N₂ of sPEEK Mats

Results:

- Thermal treatment increases fiber diameter (conservation of fiber volume results in an increase in fiber diameter when there is a shrinkage in mat length)
- For a similar mat density, the laminator method for mat compaction results in smaller fiber diameters, as compared to an oven treatment

Vapor Welding of Fibers

Results: (1) There is an increase in mat density with fiber welding and (2) The proton conductivity of a compacted/welded mat is consistent with the mat density and the conductivity of sPEEK.

Preliminary Results for Embedding Mats Using a UV-curable Thermoset

SEM micrographs of cross-section of the nascent, porous mat (top) and of the embedded, dense membrane (bottom) at two magnifications: 10K (left) and 30K (right).

Results: NOA 63 (UV curable thermoset) is suitable to embed a sPEEK electrospun mat

Synthesis and Characterization of sPAES Polymers

Sample code	Mn (g/mol)	Mw (g/mol)	Actual mol % of SDCDPS	Film Conductivity (S/cm)	Solubility in DI water
sPAES50/BP	67,400	109,300	42	0.07	Insoluble
sPAES60/BP	70,500	131,400	52	0.121	Insoluble

•TGA results of sPAES/BP polymers measured in air

•Samples were pre-dried at 150 °C for 30 min under N₂ atmosphere

Results: We have synthesize a high conductivity polymer, which will be electrospun into mats

Project Summary

- **Relevance:** Membranes that conduct protons at high temperature and low relative humidity are needed for hydrogen/air PEM fuel cells.
- Approach: Use an electrospun NanoCapillary Network (NCN) membrane micromorphology where an interconnected mat of proton conducting polymer nanofibers are imbedded in an inert polymer matrix.
- Technical Accomplishments and Progress: Electrospun fiber mats have been fabricated from sulfonated poly(ether ether ketone). The mats have been compacted and the fibers welded. The proton conductivity of densified/welded mats has been measured.
- Proposed Future Research: Increase the proton conductivity of fiber mats and impregnate the mats with inert polymer.

Peter N. Pintauro 216.368.4150 pnp3@case.edu

Future Work 2007-08

Increase the proton conductivity of electrospun mats

- Refine methods for increasing the density of fibers in a mat by: (i) Changing the electro-spinning conditions (e.g., spinneret potential, flow rate, spinneret to collector distance) and (ii) Varying the mat compaction and welding methods.
- Use a higher IEC polymer to create the fibers (sPEEK and/or sulfonated polysulfone) with a homogeneous (fully dense) polymer conductivity of at least 0.12 S/cm.
- Investigate electrospinning with high IEC polymers in different counterion forms.

Impregnate compacted and welded fiber mats with an inert polymer

 Look at different impregnation polymers, different mat densities, and nanofiber mats of different IEC

Continue to investigate and characterize the properties of electrospun mats of an ion-exchange polymer

- Determine the mechanical properties of the mats as a function of ionexchange capacity and mat density.
- Determine the effect of a water boiling pretreatment step on the proton conductivity of electrospun mats.