Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program

James Fenton
University of Central Florida-FSEC
May 16, 2007

Project ID FC15

Timeline

- Start: April 1, 2006
- End: March 31, 2011
- 20% Complete

Budget

- Total project funding
 - DOE \$2,500K
 - Contractor \$625K
- Funding for FY06 \$250K
- Funding for FY07 \$500K

Overview

Barriers

- Barriers addressed
 - D. High Conductivity at Low RH & High T
 - C. High MEA Performance at Low RH & High T
 - A. Membrane and MEA durability
- Targets
 - Conductivity = 0.07 S/cm @ 80% relative humidity (RH) at room temp using alternate material – 3Q Yr 2 milestone
 - Conductivity >0.1 S/cm @ 50% RH at 120 °C 3Q Yr 3 Go/No Go

Partners

- BekkTech LLC In–plane conductivity protocols
- Scribner Associates Through-plane conductivity protocols
- Project management

Objectives

- New polymeric electrolyte / phosphotungstic acid membranes
- Standardized Characterization Methodologies
 - Conductivity f(RH, T, Prep. Procedure) [Through- & In-Plane]
 - Characterize mechanical, mass transport and surface properties of membranes
 - Predict durability of membranes and MEAs fabricated from other eleven HT Low RH Membrane Programs
- Provide HTMWG members with standardized tests and methodologies (Short Courses)
- Organize HTMWG bi-annual meetings

Approach

- Task 1. Non-Nafion® based
 Poly[perfluorosulfonic acid] phosphotungstic acid
 composite membrane and
 membrane electrode assembly
 (MEA) fabrication
- Task 2. Sulfonated poly(ether ketone ketone) or sulfonated poly(ether ether ketone) Phosphotungstic Acid Composite Membrane and MEA Fabrication

- **Task 3**. In-Plane Conductivity Measurements
- **Task 4**. Through-Plane Conductivity Measurements
- **Task 5**. Characterize Performance of MEAs
- **Task 6**. Membrane and MEA Durability
- **Task 7**. Meetings and Activities of HTMWG

- **Task 1.** PFSA low eq. wt.-Teflon®- Phosphotungstic Acid Composite Membrane and MEA Fabrication
 - Fabricated and tested FSEC-1 (solved RH issue for fabrication)
 - Identified and procured alternative low equivalent weight (EW) poly[perfluorosulfonic acid] (PFSA) ionomer
 - Demonstrated process for 1100 EW, started trials on 750 EW

Nafion 112 and FSEC-1 at 80C

FSEC-1 showed improvement in conductivity compared to Nafion 112

The XRD pattern of FSEC I membrane, left, exhibiting the increased crystalline nature due to incorporation of PTA in the Nafion® matrix and Nafion 112, right.

- Task 2. SPEEK and SPEKK-based PTA Composite Membranes
 - SPEEK prepared at 30, 60, and 85% degrees of sulfonation
 - SPEKK prepared at 10, 60, and 80% degrees of sulfonation
 - Optimum ranges of sulfonation determined
 - 15% by weight PTA composites fabricated
 - Preliminary σ_{H+} vs RH data obtained (completion of Year 1 milestone)

SPEEK- PTA Composites at 80C

- Task 3. In-Plane Conductivity Measurement
 - Established baseline for commercial membranes
 - Nafion® NRE-211, NRE-212, N1135, N1035, and N117 samples tested at 30 °C, 80 °C & 120 °C
 - Results compared for FSEC, BekkTech and Scribner

Four Electrode Conductivities of Nafion at 30C

Four Electrode Conductivities of Nafion at 80C

Four Electrode Conductivities of Nafion at 120C

Task 4. Through-Plane Conductivity Measurement

- Developed & verified performance of primary components of prototype through-thickness membrane conductivity test system, MTS (Year 1 milestone).
- Method allows direct measurement of through-plane conductivity of bare membranes.
- Developed MTS gas handling system for improved rapid relative humidity cycling at 30 – 120 °C.
- Developed MTS hardware for safe high temperature, pressurized operation.
- Gathered and compared Nafion[®] through-plane and in-plane conductivity (literature and BekkTech).
- Demonstrated feasibility of using Model 850C Compact Fuel Cell Test System (Scribner Assoc. Inc.) for wet-dry gas mixing for rapid dew point and relative humidity cycling.

Nafion NRE-212 Conductivity at 80 °C, 100 kPa In-Plane (BekkTech) and Through-Plane (Scribner)

Summary of Reported Nafion 117 Conductivity at 30 °C

Future Work

- Complete trials on 800 EW material
- Complete analysis of in-plane and through-plane conductivity of commercial membranes (late Sept. 2007)
- Complete characterization of first three membranes from Topic 1 awardees (late Dec. 2007)
- Demonstrate conductivity of 0.07 S/cm, 50% RH, 25 °C (late Dec. 2007)
- Establish MEA test protocol (June 2008)

Summary

Relevance - A new membrane material for PEM Fuel Cells with sufficiently improved conductivity at high temperature(120 °C) and low RH is required for the transportation F/C market. A new method for measuring membrane conductivities with sufficient accuracy and reliability is required for DOE program decisions.

Approach - Develop and demonstrate new materials for membranes, and define and apply new tools and procedures for membrane conductivity testing.

Tech. Accomplishments /Progress- Demonstrated ability to fabricate baseline membrane materials (Nafion®, SPEEK, and SPEKK). Demonstrated ability to test in-plane conductivity and developed method for through-plane conductivity. Again demonstrated improved conductivity due to PTA addition.

Summary

Tech. Trans. /Collaboration- Formed active partnership with BekkTech and Scribner Associates. Established formal working relationship with the HTMWG

Proposed Future - Fabricate and test new membrane formulations with low EW poly[perfluorosulfonic acid] ionomers, and new formulations of SPEEK,SPEKK. Perform conductivity test on these membranes, as well as the membranes supplied by the Task 1 members. Conductivity testing will be conducted using the new tooling and procedures that are verified in this program.