

High Temperature Membrane with Humidification-Independent Cluster Structure

Ludwig Lipp FuelCell Energy, Inc. May 16th, 2007

Project ID# FC18

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: July 2006
- End: May 2011
- 17% complete

Budget

- Total project funding
 - DOE share: \$1500k
 - Contractor share: \$600k
- Funding received in FY06: \$150k
- Funding for FY07: \$100k to date

Barriers

 Low Proton Conductivity at 25-50% Inlet Relative Humidity and 120°C

Targets

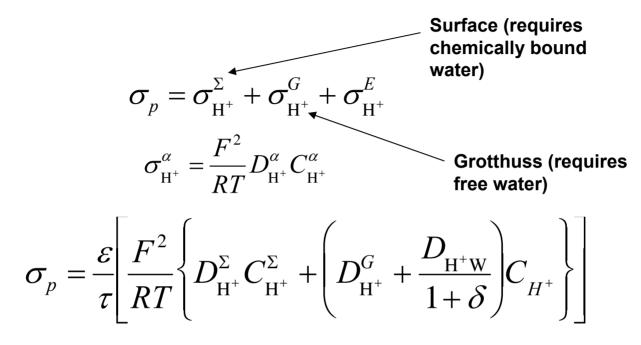
- Membrane Conductivity:
 - At 120°C: 100 mS/cm
 - At Room Temp.: 70 mS/cm
 - At -20°C: 10 mS/cm
- Cell Area Specific Resistance: 0.02 Ωcm²

Acknowledgements

- DOE: Amy Manheim, Reg Tyler, Tom Benjamin
- UCF: Jim Fenton & Team (Testing protocols, membrane conductivity workshop)
- BekkTech LLC: Tim Bekkedahl (In-plane conductivity measurement)
- FCE Team

Approach for the Composite Membrane

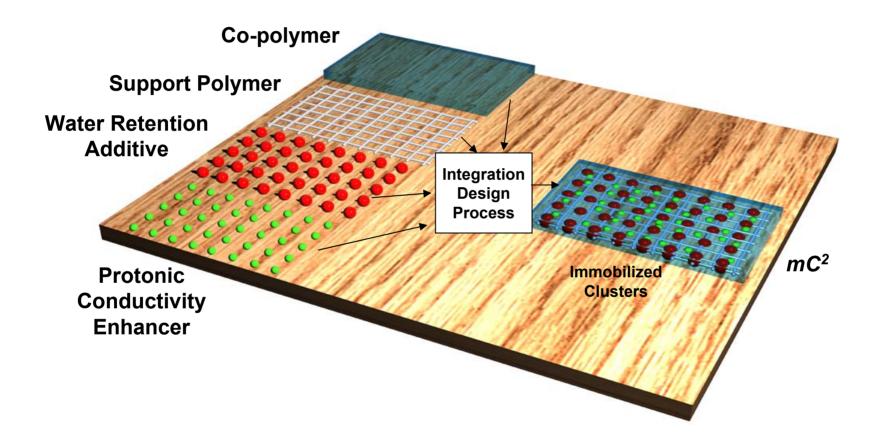
Target Parameter	DOE Target (2010)	Approach	
Conductivity at: 120°C	100 mS/cm	Multi-component composite structure, lower EW	
: Room temp.	70 mS/cm	Higher number of functional groups	
: -20°C	10 mS/cm	Stabilized nano-additives	
Inlet water vapor partial pressure	1.5 kPa	Immobilized cluster structure	
Hydrogen and oxygen cross- over at 1 atm	2 mA/cm ²	Stronger membrane structure; functionalized additives	
Area specific resistance	$0.02 \ \Omega cm^2$	Improve bonding capability for MEA	
Cost	<40 \$/m²	Simplify polymer processing	
Durability:		Thermo-mechanically compliant	
 with cycling at >80°C 	>2000 hours	bonds, higher glass transition	
 with cycling at ≤80°C 	>5000 hours	temperature	
Survivability	-40°C	Stabilized cluster structure design	



Technical Accomplishments

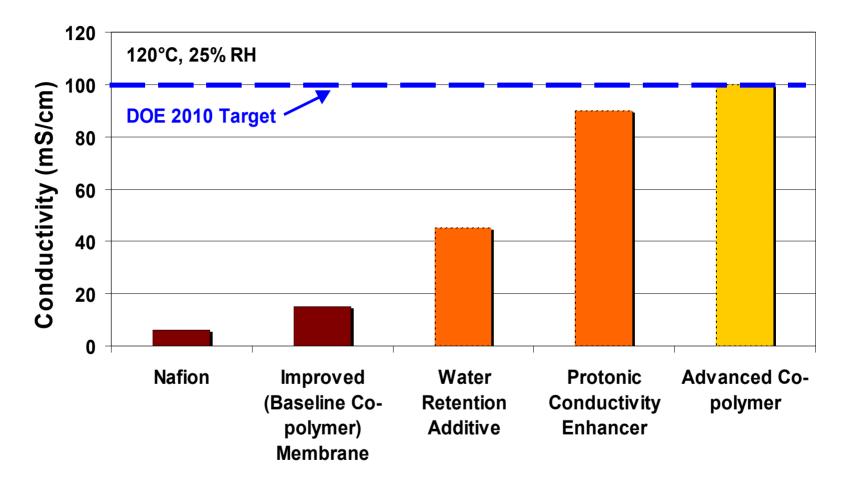
- Multi-Component Composite (mC²) membrane concept defined
- Improved Baseline Polymer selected and characterized (6 month milestone met)
- Additives for water retention and protonic conductivity enhancement have been identified and fabricated. Initial results are encouraging
- Measurements verified by BekkTech
- Conductivity is used as a "figure of merit", mechanical properties are used as a check point

Proton Conductivity Model



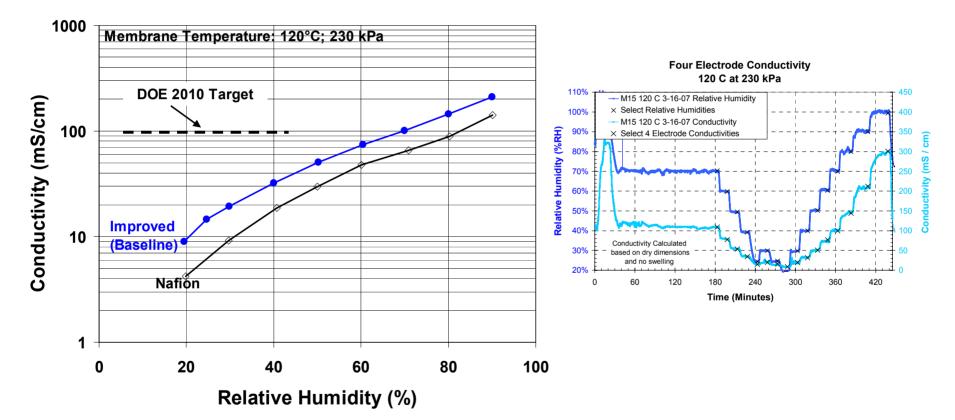
 $C_{\mathrm{H}+}^{\Sigma}$ and $C_{\mathrm{H}+}$ obtained from sorption thermodynamics

Understanding the Role of Free and Chemically Bound Water is Needed


Composite Membrane Concept

Multi-Component System with Functionalized Components

Development Steps to Conductivity Goal



Each Individual Component Contributes to Conductivity Improvements

Improvements in the Polymer Membrane

- In-plane 4-electrode Measurement used to Determine Conductivity
- BekkTech has Developed a Reliable In-plane Conductivity Measurement

The Improved (Baseline) Membrane Offers 2.5x Better Conductivity over Nafion[®]

FuelCell Energy

Membrane Additive Development

Benefits:

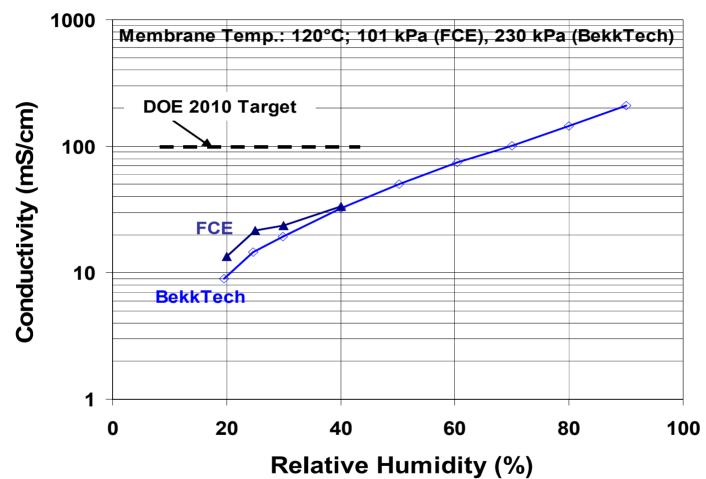
- Conductivity less dependent on RH
- Conductivity at subfreezing temp.
- Potentially lower cost
- Design for mechanical strength

Anticipated Issues: - Water solubility

- Electrochemical stability
- Compete for "real estate"
- Non-uniform dispersion

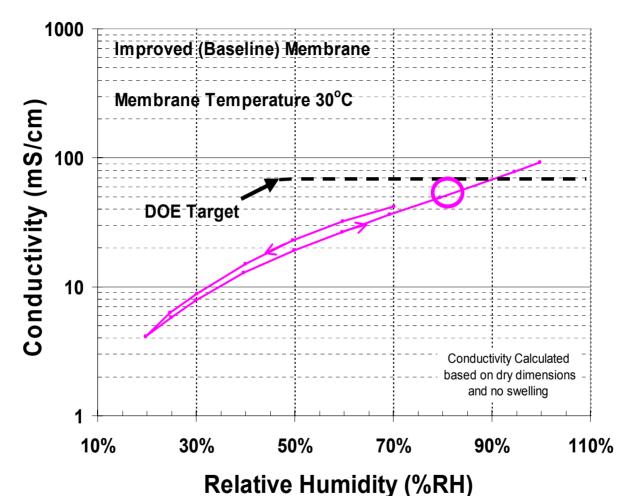
Conductivity Improvements Due To Additives

Preliminary Data


Range of Conductivity Improvement: 3 to 5x

FuelCell Energy

Reproducibility of Conductivity Data


Impact of Test Conditions

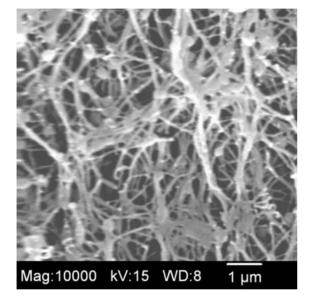
Changes in Humidification Play an Important Role

Lower Temperature Conductivity

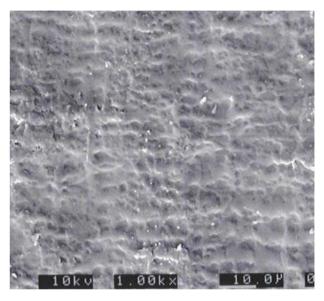
Close to Meeting Conductivity Target of 70 mS/cm @ 80% RH @ RT (Reached 70% of Target)

FuelCell Energy

Mechanical Properties: Nafion vs. Improved (Baseline)


Membrane (Dry state, 50µm thick)	Baseline-M15	Baseline-M15	N112	N112
Test direction	MD	TD	MD	TD
Tensile Modulus, MPa	182	188	232	208
Tensile Strength, MPa	34	24	38	23
Elongation at Break, %	162	214	117	228

No Apparent Loss in Mechanical Strength



Composite Membrane Fabricated

Porous Support

Composite Membrane

Pore-free membrane successfully fabricated; conductivity measurements in progress; mechanical testing planned

Benefits:

- Higher Mechanical Strength
 - Thinner Membrane (25 µm)

Future Work

- Fabricate and Characterize mC² Improved Baseline Membrane Process
- Improve Functionality of Individual Components
- Initiate Materials/Compositions/Processing for Advanced Membrane Polymer Development
- Upcoming Key Milestones:
 - Define materials/compositions/processing for advanced membrane (Nov 07)
 - Meet conductivity target of 70 mS/cm @ 80% RH @ RT (Feb 08)
 - Select preferred design for the composite membrane (May 08)
 - Conductivity testing by DOE (annually)

Project Summary

- Multi-component composite membrane design identified for high temperature and low relative humidity operation
- Demonstrated conductivity > 2.5x higher than Nafion, without loss in mechanical properties
- Functionalized additives show promise to further increase conductivity by 3 to 5x to approach DOE goal
- Initial composite membrane fabricated

Project Summary Table

DOE 2010 Technical Targets for Membranes for Transportation Applications [#]							
Performance Parameter	Units	2010 Target	Commercial Membrane (Nafion [®] 112)	FY06-07 Result			
Conductivity at 120°C and 25% RH	mS/cm	100	6	15* Membrane Only			
H ₂ Cross-over at 1 atm	mA/cm ²	2	≤1	~1 expected			

[#] From DOE Multi-Year RD&D Plan, Technical Plan - Fuel Cells, Table 3.4.12., April 2006

* Anticipated with the Additives: >45 mS/cm

