

... for a brighter future

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Fuel Cell Systems Analysis

R. K. Ahluwalia, X. Wang and R. Kumar 2007 DOE Hydrogen Program Review Arlington, VA May 15-18, 2007

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project ID: FC1

Overview

Timeline

Start date: Oct 2003
End date: Open
Percent complete: NA

Budget

FY07 funding: \$500K
 DOE share: 100%
 FY06 funding: \$450K

Barriers

- B. Cost
- C. Performance
- E. System Thermal and Water Management
- F. Air Management
- J. Startup and Shut-down Time and Energy/Transient Operation

Partners

- Honeywell CEM+TWM projects
- IEA Annexes 17 and 20
- FreedomCAR fuel cell tech team
- TIAX, 3M
- H₂ Quality Working Group
- Vairex

Objectives

Develop a validated system model and use it to assess design-point, part-load and dynamic performance of automotive fuel cell systems.

- Support DOE in setting and evaluating R&D goals and research directions
- Establish metrics for gauging progress of R&D projects

Approach

Develop, document & make available versatile system design and analysis tools.

- GCtool: Stand-alone code on PC platform
- GCtool_ENG: Coupled to PSAT (MATLAB/SIMULINK)

Validate the models against data obtained in laboratory and at Argonne's Fuel Cell Test Facility.

Apply models to issues of current interest.

- Work with FreedomCAR Technical Teams
- Work with DOE contractors as requested by DOE

Technical Accomplishments

- 1. System analysis to update the status of technology
- Formulated correlations for 3M membrane
- Modified MEA model for NSTF catalyst structure
- Validated the stack model against experimental data
- Developed optimum operating maps by integrating the performance of the CEM, stack and humidification device
- Analyzed heat rejection at elevated stack temperature
- Made presentations to DOE and TIAX to convey results
- Supplied performance and component data to TIAX and assisted in the FCS-2007 cost study
- 2. Impurity effects in support of H_2 Quality Working Group
- Developed models for N_2 , CO, CO₂, $H_2S \& NH_3$ impurities
- Analyzed effects of anode gas recycle
- Constructed maps for voltage and efficiency degradation

Argonne 2007 Reference Fuel Cell System

- Modified PFSA membrane for enhanced durability at low humidity
- 3M NSTF ternary-alloy catalyst for low Pt loading, diminished ECSA loss with potential cycling, stability at high potentials
- Higher cell temperature to help with heat rejection

Correlations for 3M Membrane (EW ~825)

Data Used

- Water uptake (λ) vs. RH at 25°C and 50°C
- Ionic conductivity (σ) vs. λ at 25°C and 50°C
- Ionic conductivity (σ) vs. T at 80°C dew point temperature
- **Correlations Produced**
- Water uptake (λ) vs. RH and T
- lonic conductivity (σ) vs. λ and T

Stack Model for 3M's NSTF Ternary-Alloy Catalyst

Derived correlations for ORR exchange current density & ECSA vs. Pt loading

- Specific activity vs. Pt loading for 683-C whiskers
- Mass activity vs. Pt loading for 683-C whiskers
- Formulated model for water transport in 3M membrane
- IR drop vs. RH at 1.5 bar
- IR drop vs. P at 67% RH
- Formulated semi-empirical model for flooding of NSTF catalysts
- 3M experience with optimum dew point temperatures at different P & T

System Operating Map with 3M Membrane & Catalysts

- Developed a method to integrate CEM, EWH, MH and stack for optimum performance
- As P \uparrow , V \uparrow , but P_{cp} \uparrow
- As SR \uparrow , V may \uparrow , but P_{cp} \uparrow
- If T_{dp} too high, V↓ due to flooding
- If T_{dp} too low, V↓ due to membrane dry out
- P_{cp}: compressor power
 SR: cathode stoichiometry

FCS Heat Rejection

- Heat rejection most challenging at 55 mph on 6.5% grade
- Frontal area reduced by allowing the stack temperature to rise
- Cathode SR must decrease for stack temperature to rise (otherwise membrane dries out)
- Need 94°C for 1.3 x ICE frontal area (A₀) and 25 mm depth

FCS Net Power = 61.5 kWe

SR = 2

SR = 2.1

96

97

55

54

53

52

51

50

49

48

90

91

92

93

94

95

Cell Temperature. °C

⁼CS Efficiency, %

Summary of System Analysis Results

PGM target met but durability remains to be demonstrated

Simplification of BOP and CEM bottom-up costing may be needed

	Units	2005 Status	2007 Status	2010 Target	Comments
System Cost	\$/kW _e	108	67	45	
System Efficiency at 25% Rated Power	%	57	60	60	Peak efficiency
System Efficiency at Rated Power	%	46	50	50	
System Specific Power	W/kg	710	790	650	
System Power Density	W/L	590	640	650	
Stack Cost	\$/kW _e	62	30	30	per kW _e stack
Stack Efficiency at 25% Rated Power	%	59	62	65	
Stack Efficiency at Rated Power	%	52	55	55	
Stack Specific Power	W/kg	1860	1900	2000	
Stack Power Density	W/L	1730	2070	2000	
MEA Cost	\$/kW _e	55	21	15	
MEA Performance at Rated Power	mW/cm ²	670	740	1280	
MEA Degradation Over Lifetime	%	>90%	TBD	10	
PGM Cost	\$/kW _e	44	16	8	Pt Cost
PGM Content (peak)	g/kW _e	1.1	0.4	0.5	2005: \$29/g
PGM Loading (both electrodes)	mg/cm ²	0.75	0.3	0.3	2007: \$35/g
Membrane Cost	\$/m ²	24	16	40	
Bipolar Plate Cost	\$/kW _e	3	3	6	
CEM System Cost	\$	1080	1080	400	

Cost numbers are from TIAX with slightly different assumptions

Modeling of Impurity Effects

- What are the mechanisms by which impurities in fuel H_2 (N_2 , CO, CO₂, H_2S and NH_3) affect the performance of fuel cells?
- What is the effect of anode gas recycle on buildup of impurities?
- What is the effect of buildup of impurities on cell voltage?
- What are the impacts of purge and impurity buildup on stack efficiency?

- Once-through cathode stream
- Anode gas recirculation
- Crossovers of H₂, O₂, N₂ and H₂O included

$$R = \dot{N}_r \, / \, \dot{N}_p$$

Pt Poisoning Model

- Hydrogen Oxidation Reaction
 - − H₂ + 2M ⇔ 2M-H
 - M-H \implies M + H⁺ + e⁻
- CO Poisoning of Pt

- (Dissociative Adsorption)
- (Electrochemical Oxidation)
- $CO + 2M \iff M_2$ -CO (Associative Adsorption on Bridge Sites)
- CO₂ + 2M-H \implies M₂-CO + H₂O (Reverse Water-Gas Shift)
- $-M_2$ -CO + H_2 O \implies 2M + CO₂ + 2H⁺ + 2e⁻ (Electrochemical Oxidation)
- Reactions with Oxygen
 - M₂-CO + $\frac{1}{2}$ O₂ \implies 2M + CO₂
 - $2M-H + \frac{1}{2}O_2 \implies 2M + H_2O$

(CO Oxidation) $(H_2 \text{ Oxidation})$

- H₂S Poisoning of Pt
 - M + H₂S \iff M-H₂S
 - M-H₂S + M-H \implies M₂S + 3/2H₂
- (Reversible Associative Adsorption)
- (Irreversible Dissociation)
- $-M_2S + 2H_2O \implies 2M + SO_2 + 4H^+ + 4e^-$ (Electrochemical Oxidation)

CO/CO₂ Poisoning Model Validation

H₂S Poisoning Model Validation

NH₃ Effect on Cell Performance

Transient stack model with steady-state option

- NH₃ uptake in ionomer modeled as reversible absorption-desorption
- Reversible NH₃ uptake in membrane, exposed to anode & cathode gases
- Effect of NH₄⁺ on conductivity empirically derived
- Data from Electrochem. & Solid-State Letters, A133-A135, 2003
- Gore PRIMEA Series 5621, 35 μm membrane, 0.45 mg/cm² Pt-Ru on anode, 0.6 mg/cm² Pt on cathode, 70°C, 101 kPa

Optimum Recycle Ratio with CO/CO₂ in Fuel H₂

- Stack efficiency defined as DC power generated divided by LHV of H₂ utilized, reacted or purged
- Optimum recycle ratio decreases with CO or CO₂ concentration in fuel H₂
 - Optimum R: 125 with neat H₂
 - Optimum R: 80 with 1-ppm CO in fuel H₂
 - Optimum R: 20 with 1% CO_2 in fuel H_2

Summary: Limits for CO and CO₂ in Fuel H₂

Pressurized stack, 0.4 mg/cm² Pt loading, 50 μ m Nafion membrane, 50% H₂ utilization, 70% per-pass H₂ utilization

- - ~1%-point $\Delta \eta$
 - Results are for optimum
 R (~100 at 100 ppb CO

- CO₂ in fuel H₂ <2500 ppm for $\Delta V = 10 \text{ mV}$ at 1 A/cm²
 - ~1.5 %-point Δη
 - Results are for optimum R
 (~40 at 2500 ppm CO₂ in H₂)

Summary: Limits for H₂S and NH₃ in Fuel H₂

Pressurized stack, 0.4 mg/cm² Pt loading, 50 μ m Nafion membrane, 50% H₂ utilization, 70% per-pass H₂ utilization

- H₂S <2 ppb for ∆V=10 mV at 0.5 A/cm² after 5000 h
- At low dosage, ∆V weakly depends on R, R=10/100 (open/closed symbols)

- NH₃ <200 ppb for ∆V=10 mV at 1 A/cm²
- Optimum R depends on NH₃ in fuel H₂: 80 for 1-ppm and 12 for 3-ppm NH₃

Future Work

- 1. System Analysis
- Support DOE/FreedomCAR development effort at system, component and phenomenological levels
- Continue collaboration with Honeywell to validate air, thermal and water management models
- Work with Vairex on blowers for low-pressure FCS options
- 2. Hydrogen Quality
- Expand work on fuel and air impurity effects
- Support experimental projects on impurity effects
- Support the Hydrogen Quality Working Group and the Codes and Standards Technical Team
- 3. Durability
- Develop models for End-of-Life performance

Additional Slides

Argonne Reference FCS Parameters

PEFC Stack

- 2.5 atm at rated power
- 50% O₂ utilization
- 70% H₂ consumption per pass
- Cell voltage at rated power: 0.685
- 30-μm 3M membrane at 90°C
- 3M ternary alloy: 0.2/0.1 mg-Pt/cm² on cathode/anode
- GDL: 275-μm non-woven carbon fiber
- 2-mm expanded graphite bipolar plates, each with cooling channels
- 10 cells/inch

Fuel Management System

- Hybrid ejector-recirculation pump
- 40% pump efficiency
- 2 psi pressure drop at rated power

Air Management System

- Compressor-expander module
- Liquid-cooled motor
- Efficiencies at rated power: 78% compressor, 82% expander, 92% motor, 92% controller
- Turn-down: 20
- 5 psi pressure drop at rated power

Heat Rejection System

- Two circuits: 85°C HT, 55°C LT coolant
- 75% pump + 92% motor efficiency
- 60% blower + 92% motor efficiency
- 10 psi pressure drop each in stack and radiator

Water Management System

- EWH for air, 51% RH at rated power
- MH for H₂, 51% RH at rated power

Reference FCS Configurations

	Argonne 2005 FCS	Argonne 2010 FCS	Argonne 2015 FCS				
Stack Subsystem							
Membrane	PFSA: 50 µm	Modified PFSA:30 µm	High T Membrane				
Electrocatalyst	Pt/C, 0.5/0.25 mg/cm ² Pt (c/a)	Pt Alloy	Pt Alloy or Non PM				
GDL	275-µm Woven Carbon Cloth	Non-Woven Carbon + Micro Porous Layer	Non-Woven Carbon + Micro Porous Layer				
Bipolar Plate	2-mm Expanded Graphite	Graphite / Metal	Graphite / Metal				
Cell Power Density	$666 \text{ mW/cm}^2 @ 0.65 \text{ V}$	TBD	TBD				
Temperature	80°C	>90°C	<=120°C				
Air Management Subsystem							
Pressure	Pressurized - 2.5 atm	Pressurized - 2.5 atm	Near Ambient				
Technology	CEM	CEM	Blower (BMM)				
Water Management Subsystem							
Humidification	External	External / Internal	None				
Technology	EWH + MH	EWH + MH Advanced Flow Field	None				
Thermal Management Subsystem							
Radiator Concept	Standard Automotive, LT + HT Circuits	Advanced Automotive, LT + HT Circuits	Standard Automotive, LT + HT Circuits				
Stack Coolant	Ethylene Glycol	Ethylene Glycol	Ethylene Glycol				
Fuel Management Subsystem							
Fuel H2	High Purity	FC Quality	FC Quality				
Anode Gas Recirculation	Ejector / Blower	Ejector / Blower	Dead Ended				
Purge	Periodic	Periodic	Continuous				

Argonne 2010 FCS Configuration

Changes from FCS 2005

MEA

- Catalyst: Ternary Pt alloy
- 3M's NSTFC
- Organic whisker support
- 3M PFSA membrane

AMS

- CEMM: 2.5 bar

WMS

- No change

TMS

- No change

FMS

- No change

Argonne 2015 FCS Configuration

