Fluoroalkyl-phosphonic-acidbased proton conductors

Stephen Creager (PI) and Darryl DesMarteau Clemson University and Oleg Borodin, Grant Smith, and Gregory Voth University of Utah FC 20 May 16, 2007 DE-FG36-

This presentation does not contain any proprietary or confidential information 06GO16031

Overview

Timeline

- Start: April 2006
- Finish: March 2011
- Twenty percent complete

- Total project funding
 - DOE \$1,500,000
 - Contractor \$381,000
- Funding for FY06
 - \$150,000 from DOE for April – Oct 2006
 - \$150,000 from DOE for
 Oct 2006 March 2007

- Barriers
 - Thermal, air and water management.
- Targets
 - Membrane ionic conductivity > 0.10
 S/cm at < 120 °C and water partial pressure of 1.5 kPa for transportation
 - Membrane ionic conductivity > 0.10
 S/cm at > 120 °C for stationary

- Dr. Alex Kitaygorodskiy, Clemson
- Dr. Ashok Krishnaswami, JEOL
- Professor Klaus D. Kreuer, Max Planck Institute, Stuttgart, GE
 (all these will belo with NMR studies of

(all these will help with NMR studies of proton transport rates)

Objectives

Overall project	 Provide new electrolyte materials for use in next-generation hydrogen-fuel-cell power sources, especially for automotive
	transportation applications.
Specific project objectives	(1) <u>Synthesize and characterize new proton-conducting electrolytes</u> based on the fluoroalkylphosphonic acid functional group; and
	(2) <u>Create and apply new computer models</u> to study proton conduction in fluoroalkylphosphonic acid-based electrolytes.
Year 1 Milestones (April 2006 – March 2007)	 Synthesize and/or purify at least 10 g each of one or more small- molecule fluoroalkylphosphonic acid electrolytes.
	 Fabricate and validate an apparatus for measuring ionic conductivity of electrolytes at temperatures between ambient and 120 °C and relative humidities between 25 and 100 percent.
	 Develop classical force fields for and perform MD simulations of low molecular weight fluoroalkylphosphonic acid electrolytes using developed force field.
	 Develop first generation of the multi state empirical valence bond model (MS-EVB) for proton transport in fluorophosphonic acid.

Approach

 Task 1.0 Synthesize new fluoroalkyl- phosphonic-acid-based electrolytes. Small-molecule acids Trifluorovinylether (TFVE) monomers Tetrafluoroethylene (TFE) copolymers to give ionomer membranes 	Task 5.0Perform computersimulations of fluoroalkylphosphonic- acid electrolytes.– Develop and validate force fields including multi-state empirical valence bond model for explicit treatment of proton transport in MD simulations. Predict proton and water transport rates.
<u>Task 2.0</u> Characterize new fluoroalkyl- phosphonic-acid-based electrolytes. – Structure, purity, ion (proton) transport rates (diffusivity, conductivity)	Task 6.0Perform computer simulations of fluoroalkylphosphonic acid electrolyte / heterocycle/water mixtures.– As in Task 5.
Task 3.0 Demonstrate conductivity of at least 0.07 S/cm at 80% RH at ambient temperature.	Task 7.0Project Management and Reporting.– Deliver membrane(s) to Topic 2 awardee; periodic reports; annual reviews
Task 4.0Demonstrate conductivity of atleast 0.10S/cm at 50% RH at 120 °C.	4

Rationale: Why fluoroalkylphosphonic acids?

- They are similar to phosphoric acid in allowing for <u>structure-diffusion-based proton hopping</u> without the need for excess liquid water;
- 2. They are <u>stronger acids</u> than phosphoric and alkylphosphonic acids which should promote proton dissociation, hopping and transport;
- 3. They should have <u>weaker adsorption</u> onto Pt than other phosphorous-acid-based electrolytes which should help prevent electrocatalyst poisoning and promote higher oxygen reduction activity;
- 4. They should provide <u>higher oxygen solubility</u> than other phosphorous-acid-based electrolytes which should also promote higher oxygen reduction activity; and
- 5. They should be quite <u>chemically and thermally stable</u> which will provide durability in PEM fuel-cell power sources

Electrolyte Structures

I.
$$\begin{cases} F - (CF_2)_n - PO_3H_2 \\ H_2O_3P - (CF_2)_n - PO_3H_2 \end{cases}$$
Small molecules
CF_2 = CFO
II.
$$(CF_2CFO)_n - (CF_2)_m - PO_3H_2 \\ CF_3 n = 1, m = 2 \end{cases}$$
Trifluorovinylether
monomers
-(CF_2 - CF)_a - (CF_2CF_2)_b - III.
$$O_{(CF_2CFO)_n} - (CF_2)_m - PO_3H_2 \\ CF_3 \\ C$$

Technical Accomplishments

Synthesis & characterization of R_f -PO₃H₂ small-molecule model compounds and trifluorovinyl ether monomers

Fluoroalkylphosphonic acid synthesis

Some problems with this method:

- Instability of the R_{f}^{-} anion
- R_f-H formation, olefin formation

An improved synthesis of perfluoroalkyl-phosphonic acids

- Yields are high, all by-products are volatile and easily removed.
- Higher perfluoroalkyl homologues have not yet been synthesized via this method
- Preparations using $R_f C_2F_5$, C_3F_7 , C_4F_9 are in progress

Conductivity Studies

Cell internal volume is less than 20 μL

Parts are as follows:

С

D

Н

Е

B

Α

J

G

F

Η

- A. Vacuum / gas inlet / outlet
- B. Impedance analyzer
- C. Pressure transducer
- D. Thermocouple
- E. Cell holder
- F. Liquid electrolyte (acid plus water)
- G. PEEK cell body
- H. Platinized platinum rod electrodes
- I. Filling / pressure equalization hole (1 mm diameter)
- J. Heating tape for temperature control

Arrhenius plots of ionic conductivity

- Trifluoromethylphosphonic acid with three waters per acid has higher conductivity than 85% phosphoric acid
- Studies using variable amounts of water, from nearanhydrous to very waterrich, are in progress.
- Studies using different fluoroalkyl groups including simple chains, difunctional compounds, and trifluorovinylether monomers, are in progress.
- 1. Chin, D.-T., Chang H. H., Journal of Applied Electrochemistry, 1989. 19: pp. 95-99
- 2. Razaq, M., Razaq A., Yeager E. Case Western Reserve Univ. 1989 pp 214 NTIS No. PB89178768

Synthesis of monofluoroalkylphosphonic acid trifluorovinyl ether (TFVE) monomer **g**

 Monomer g was obtained in excellent yield in approximately 10 gram amount

Fluoroalkyl Phosphonic Acid Ionomer Synthesis and Characterization

Fluoropolymer Synthesis at Clemson

Darryl DesMarteau, Clemson Chemistry Department

Aqueous emulsion co-polymerization of TFVE monomers with TFE

 $OR_f = OCF_2CF(CF_3)OC_2F_4P(O)(ONa)_2$ (monomer g)

Result:

Suspected reason:

Good ionomers were NOT formed.

The TFVE monomer is not a good surfactant

Idea: Switch to di-fluoroalkylphosphonic acid monomers

- Should be better surfactant in Na⁺ form than the monofluoroalkylphosphonic acids, therefore more likely to produce good ionomers by emulsion co-polymerization with TFE in water
- Should still be quite strong acids, proton dissociation is favored
- Should / could promote proton transport by a hopping mechanism (untested so far but in progress)

Monomer f was also obtained in 10 g amount in excellent yield

NMR shows the CMC of monomer f is approx. 4 mM....

It's a good surfactant!

Aqueous emulsion co-polymerization of TFVE monomers with TFE

 $OR_f : OCF_2CF(CF_3)OC_2F_4P(O)(ONa)C_4F_9$ (Monomer f)

Result: Good ionomers were formed!

- Co-polymer P5, EW approx. 1300 g / equiv (6 TFE / equiv)
- Sparingly soluble in multiple solvents
- Membranes have been formed by solvent casting
- Conductivity testing is in progress

TGA of the co-polymer P5

Co-polymer P5 shows excellent thermal stability to past 350 °C

Computer modeling studies of proton transport in fluoroalkyl phosphonic acids (FPAs)

Summary of Technical Accomplishments

- Performed quantum chemistry studies of CF₃PO(OH)₂-nH₂O and 2CF₃PO(OH)₂-nH₂O complexes (n=0-6)
- Developed many-body polarizable classical quantum chemistrybased force fields for simulations of FPA-based proton conductors
 - Initiated classical molecular dynamics simulations of trifluoromethylphosphonic acid/water and heptafluoropropylphosphonic acid/water solutions using developed polarizable force fields
 - Performed initial classical simulations of fluorophosphonic acid-based ionomer at high hydration using nonpolarizable force fields
- Extended the Multi-State Empirical Valence Bond (MS-EVB) model to allow efficient simulations of proton transport for *high proton concentration* conditions that are expected to be occur at low RH high temperature PEM operations
 - Implemented extended MS-EVB in the molecular dynamics simulation code
 - ✤ Initial simulations of low molecular weight FPA/water electrolytes are underway

Quantum Chemistry Studies FPA/water Clusters

complex	Binding energy* (kcal/mol)	r(P O- HOw- Hw) ^a (Å)	r(PO- HO _w - H _w) ^a (Å)
FPA		0.96	
$FPA + H_2O$	-11.0	1.0	1.67
$FPA + 2 \overline{H}_2O$	-20.8	1.04	1.5
$FPA + 3 H_2O$	-31.8	1.17	1.23
$FPA + 4 H_2O$	-41.4	1.01	1.62
$FPA + 4 H_2O$	-43.2	1.37	1.08
$FPA + 5 H_2O$	-52.6	2 nd solv. shell	
$FPA + 6 H_2O$	-64.7	2 nd solv. shell	

*Binding energy is calculated at the mPW1PW91/aug-cc-pvDz level

- The structure of the hydrogen bonding network is very important as it significantly influences FPA protonation
- FPA + 3 H₂O: proton is shared between FPA and water; FPA + 4 H₂O: FPA becomes deprotonated
- Low energy barrier for proton transfer from FPA to the deprotonated FPA
- Energetics of the proton transfer and 2FPAnH₂O complexes is utilized during MS-EVB model development 24

Multi-State Empirical Valence Bond Model (MS-EVB)

The definition of the protonated species can change during the dynamical process.

Building on the previous Schmitt and Voth, J. Ph Schmitt and Voth, J. Ch Day et al, J. Chem. Phys (Related work by Warsh

Building on the previous work:
Schmitt and Voth, J. Phys. Chem. B 102, 5547 (1998)
Schmitt and Voth, J. Chem. Phys. 111, 9361 (1999)
Day et al, J. Chem. Phys. 117, 5839 (2002)
(Related work by Warshel, Borgis, and co-workers)

$$H_{ii} = V_{H_3O^+}^{intra} + \sum_{k}^{nH_2O} V_{(H_2O)_k}^{intra} + \sum_{k}^{nH_2O} V_{(H_2O)_k,H_3O^+}^{inter} + \sum_{k< k'}^{nH_2O} V_{(H_2O)_{k,k'}}^{inter}$$

$$V_{ij} = (V_{const.} + V_{ex.}) \bullet A(R_{OO}, R_{OH})$$

$$E_0 = \sum c_i^0 c_j^0 H_{ij}(x) \qquad F_k(x) = -\sum c_i^0 c_j^0 \frac{\partial}{\partial x_k} H_{ij}(x)$$

$$H = \begin{bmatrix} H_{11} \\ V_{21} \\ V_{31} \end{bmatrix}$$

ij

$$\mathbf{F} = \begin{bmatrix} H_{11} & V_{12} & V_{13} & V_{14} \\ V_{21} & H_{22} & V_{23} & V_{24} \\ V_{31} & V_{32} & H_{33} & V_{34} \\ V_{41} & V_{42} & V_{43} & H_{44} \end{bmatrix}$$

Challenges for Simulating Proton Transfer at Low Hydration

- Brute force application of MS-EVB for treatment of multiple protons lead to a big H matrix and is computationally expensive (CPU time scales as N^m, where N – number of states, m – number of excess protons)
- Recent improvements of MS-EVB methodology for multiple proton treatment allowed linear scaling of CPU time vs. number of excess protons for conditions when protons are often sufficiently far from each other and sparse matrix methods apply. The problem is solved using self-consistent iterative (SCI) scheme (SCI-MS-EVB).
- At low RH and high temperature multiple protons are expected to be often found in proximity of each other and SCI-MS-EVB condition breaks down.
- In order to preserve the computational savings of SCI-MS-EVB where possible, a novel hybrid methodology has been developed and implemented in the MD simulations code significantly reducing computational cost over the brute force solution of the H matrix.

A1B1, A1B2, A1B3, A1B4, A2B1 16 states required to describe only two independent $(H_9O_4)^+$

SCI-MS-EVB is described in Wang, F. and G. A. Voth (2005). Journal of Chemical Physics 122(14): 144105.

Undergoing MD simulations

Classical MD simulations are underway for the following electrolytes

- Trifluoromethyl-phosphonic acid/water and heptafluoropropyl-phosphonic acid/water using developed many-body polarizable force field
- FPA-based ionomer using nonpolarizable _____
 force field

$$\begin{array}{c} -(\mathsf{CF}_2\text{-}\mathsf{CF})\text{-}(\mathsf{CF}_2\text{-}\mathsf{CF}_2)\text{-}\\ \mathsf{O}\text{-}\mathsf{CF}_2\text{-}\mathsf{CF}\text{-}\mathsf{CF}_2\text{-}\mathsf{CF}_2\text{-}\mathsf{PO}_3\mathsf{H}_2\\ \mathsf{O}\text{-}\mathsf{CF}_3 \end{array}$$

Future Work for FY 07 and 08

- <u>Synthesis</u>: Small-molecule model compounds and monomers, and optimizing ionomer preparations.
- <u>Characterization</u>: Conductivity of electrolytes in liquid & membrane form, with variable water content.
 Also, PFG NMR studies of ion / molecule diffusion.
- <u>Computer modeling</u>: MD simulations of small molecule model compounds and ionomers with explicit proton hopping. Validation against PFG NMR and conductivity studies. Development of the coarsegrained model for ionomers and predicting their morphologies.

Summary

- <u>**Objective</u>**. Provide new electrolyte materials for use in nextgeneration hydrogen-fuel-cell power sources.</u>
- <u>Approach</u>. Synthesize and characterize fluoroalkyl phosphonic acid electrolytes as small-molecule models, monomers, and ionomer membranes. Model proton conduction in the same.
- <u>Technical accomplishments</u>. Many model compounds, trifluorovinyl ether monomers, and ionomers were synthesized. Conductivity studies show initial promise. Comprehensive studies at variable water content are in progress.
- Planned future work. Synthesis optimization for small molecules and ionomers; conductivity studies on electrolytes with variable water content; PFG NMR studies of model compounds; computer modeling of model compounds and ionomers. Head-to-head comparison with experiments. Guidance based upon simulations results.

Additional Slides

Fluoroalkyl-phosphonic-acidbased proton conductors

Synthesis & Characterization

Computer Modeling

Steve Creager Professor Electrochemistry And Carbon

Darryl DesMarteau Professor Fluoropolymers

Clemson University

Greg Voth Professor Theoretical & Physical Chemistry

Grant Smith Professor Computational Polymers

Oleg Borodin Research Professor Computational polymers

University of Utah

Characterization

Variable temperature / humidity membrane ionic conductivity

- A. Vacuum / gas inlet / outlet.
- B. Impedance analyzer
- C. Pressure transducer
- D. Water injection port and syringe
- E. Thermocouple
- F. Electrolyte membrane
- G. Dual platinized platinum foil contacts
- H. PEEK open-faced conductivity cell
- I. Saturated salt solution for humidity control (optional)
- J. Heating tape for temperature control

NMR data for trifluoromethyl phosphonic acid diethyl ester

NMR spectra of trifluoromethylphosphonic acid following hydrolysis

Synthesis of Perfluoroalkyl Bisphosphonates

Improved Synthetic Method for bis-phosphonic acids

40

Improved Synthetic Method for Fluorophosphate

· by products can be minimized further by reaction with more excess KF

Fluorophosphate NMR Data

F-PO(OEt)2

Fluorophosphate NMR Data

Surfactant character of monomer f Chemical shift for the cis-vinyl fluorine in monomer **f** as a function of monomer concentration

Concentration (mmol/L)	1/So (L/mmol)	PPM shift, cis-vinyl fluorine
142	0.007	-122.3
59	0.0168	-122.2
43	0.0233	-122.2
16	0.0633	-121.6
9.3	0.108	-120.9
6.6	0.152	-120.7
5.1	0.197	-120.1
1.7	0.587	-119.8
0.96	1.035	-119.7
0.3	3	-119.7

Chemical shift of cis-vinyl fluorine in monomer **f** as a function of reciprocal surfactant concentration

1/So (L/mmol)

- > CMC of compound **f** is 4 mmol/L.
- > Compound **f** is a very good surfactant.
- > Suitable for Self-Emulsifying Polymerization.

Equivalent weight of Co-polymer P5

$$\begin{pmatrix} -(CF_2 - CF_2)_n - (CF_2 - CF) - \end{pmatrix}_X$$

$$100$$

$$646$$

How does TGA give EW?

From back titration: EW = 1307 g / equiv From TGA: EW = 1290 g / equiv

That means the n = (1307-646)/100 = 6

Arrhenius plots of conductivity including data for monomer g as a neat liquid

85% H_3PO_4 - Exp data 85% H_3PO_4 - Lit data¹

Δ

 $N_{H,O}/N_{H^{+}} = 3.3 \text{ CF}_{3}\text{PO(OH)}_{2}$

 $N_{HO}/N_{H^{+}} = 3 \text{ CF}_{3}\text{PO(OH)}_{2} \text{ Lit data}^{2}$

CF₂=CFOCF₂CF(CF₃)OCF₂CF₂PO(OH)₂

- 1. Chin, D.-T., Chang H. H., Journal of Applied Electrochemistry, 1989. 19: pp. 95-99
- 2. Razaq, M., Razaq A., Yeager E. Case Western Reserve Univ. 1989 pp 214 NTIS No. PB89178768

Barriers For Anhydrous Proton Transfer and Energetics of 2FPA-nH₂O Complexes

- Low energy barrier for proton transfer from FPA to the deprotonated FPA
- An excess proton is shared between two FPAs is a slightly asymmetric configuration
- Energetics of the proton transfer and 2FPA-nH₂O complexes is utilized during MS-EVB model development

Quantum Chemistry Studies FPA-nH₂O

	mPW1PW	r(P O-	r(PO-
complex	91/aug-cc-	HOw-	HO_w
	pvDz	Hw) ^a	$-H_w$) ^a
	(kcal/mol)	(Å)	(Å)
FPA		0.96	
$FPA + H_2O$	-11.0	1.0	1.67
$FPA + 2 H_2O$	-20.8	1.04	1.5
$FPA + 3 H_2O$	-31.8	1.17	1.23
$FPA + 3 H_2O$	-33.8	1.02	1.54
$FPA + 4 H_2O$	-41.4	1.01	1.62
$FPA + 4 H_2O$	-43.2	1.37	1.08
$FPA + 5 H_2O$	-52.6	2 nd solv. shell	
$FPA + 6 H_2O$	-64.7	2 nd solv. shell	

•The structure of the hydrogen bonding network is very important as it significantly influences FPA protonation •FPA + 3 H_2O : proton is shared between FPA and water •FPA + 4 H_2O : FPA becomes deprotonated 49

PT Properties of FPA Present Special Challenges

- At relevant water contents, FPA molecules are partially protonated; i.e., the acid groups themselves participate in PT.
- Multiproton MS-EVB techniques used for very wet Nafion[™] are not capable of modeling these phenomena

- FPA simulations require:
 - A protonatable FPA model
 - Methodological advances in the multiproton MS-EVB method itself

Many Protons: The Big Matrix Approach to Solve Multi-Proton MS-EVB Problem (THE DUMB WAY)

A1B1, A1B2, A1B3, A1B4, A2B1

16 states required to describe

only two independent $(H_9O_4)^+$

Linear Scaling Approach (THE GOOD WAY) Feng (Seymour) Wang

- Each EVB center sees all other EVB centers as arrays of effective particles.
- Each effective particle has interaction parameters that are a linear combination of those of a pure hydronium and those of a pure water according to its local EVB vector.
- The coefficients of each EVB state are iterated until convergence. Sparse matrix methods.
- This method scales linearly in the number of excess protons and over computational nodes [F. Wang and GAV, JCP (2005)]

52

The Breakdown of the SCI Approximation

- As two excess protons come close together, the SCI approximation breaks down
 - Interactions between effective particles are less realistic
 - Overlap of complexes becomes problematic

The FPA molecule may draw multiple excess protons unacceptably close together 53

A Hybrid Approach

• Where the SCI approach breaks down, the Big Matrix approach becomes necessary.

A single supercomplex including both excess protons is needed

 To preserve the computational savings of SCI where possible, we've developed a novel methodology in which the Big Matrix approach is triggered dynamically where it is strictly necessary

Testing Q-HOP on imidazole

Recently we have also implemented a simplified version of the Q-HOP model⁴⁶ into our *Lucretius* MD simulation package and have investigated proton mobility in the Im/Im⁺/TFSI⁻ mixtures described above utilizing an in-house developed QC-based force field with many-body polarization. In Fig. 11 we show the mean square displacement of Im and proton (estimated from TST) as well as proton mean square displacement obtained from simulations using the Q-HOP methodology with explicit proton hopping. This figure illustrates that our MD simulations yield a ratio of proton mobility to the vehicular diffusion of its carrier (Im) of 1.5 -1.8 depending upon the method employed. Experimental measurements on the same system at somewhat lower temperature (303 K) predict that this ratio should be around 1.4. We also find that the estimated proton diffusion obtained using the TST approach differs only by 30% from that yielded by the Q-HOP MD simulations (with explicit proton hopping).

Fig. 11 Mean square displacements (msd) of proton and proton carrier (Im) obtained from simulations of Im/Im⁺/TFSI-(60/20/20) mixture at 393 K and atmospheric pressure using classical MD and explicit proton hopping Q-HOP MD simulations.