

Dimensionally Stable Membranes

Cortney K. Mittelsteadt*, William Braff, Han Liu Giner Electrochemical Systems, LLC

Xinwei Wie, Elizabeth Elacqua, Israel Cabasso SUNY-ESF

Project ID # FC21

1

DOE Hydrogen Review May 2007

Dimensionally Stable Membranes for High DE Hydrogen Program Temperature Applications **Timeline Barriers addressed**

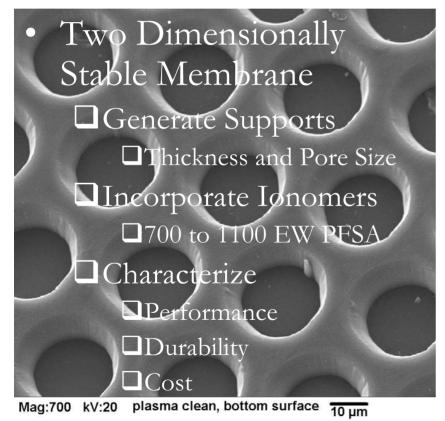
- Begin 4/3/2006
- Review 4/2/2009
- 33% Complete

Budget

- Total project funding (to 2009)
 \$899K DOE Funding
 - □ \$529K Recipient
 - □ 37% Cost Share
 - □ \$150K received FY 2006
 - **\$300K for FY 2007**

- A. Durability
- B. Cost
- Technical Targets (DOE 2010 Targets)
- 0.10 S/cm at 1.5 kPa H₂O Air inlet
- $<$40/m^2$
- > 5000 h lifetime
- Stability in Condensing conditions
 Partners
- General Motors
- SUNY-ESF

DOE Hydrogen Review May 2007

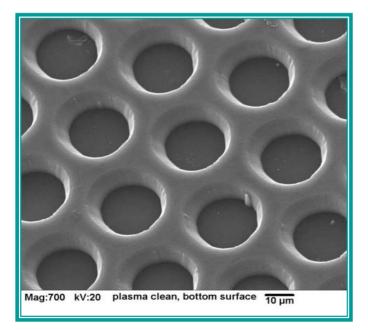


Dimensionally Stable Membranes: Objectives

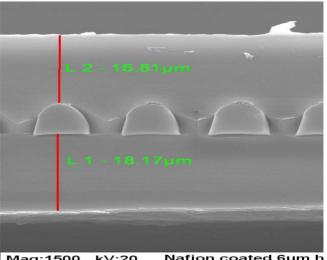
YEAR	OBJECTIVE
2006	Determine the effect of pore size and substrate thickness on conductivity and water uptake.
	Demonstrate polymerization conditions suitable for bulk polymerization of the PFSA.
2007	Demonstrate, by the 3rd Quarter, membrane conductivity of 0.07 S/cm at 80% relative humidity at room temperature using non- Nafion materials. Samples will be prepared and delivered to the Topic 2 Awardee.
2008	Go/No-Go Decision: Demonstrate, by the 3rd Quarter, membrane conductivity > 0.1 S/cm at 25% relative humidity at 120°C using non-Nafion materials. Samples will be prepared and delivered to the Topic 2 Awardee.

DOE Hydrogen Program

Approach: Lower EW of perfluorosulfonic Acid ionomers to increase low RH conductivity and support the ionomer with two and three-dimensional non-ionic materials



Three Dimensionally Stable Membrane Develop Bulk Polymerization Methods Dolymerize in Selected Supports **Characterize** Performance Durability Cost


DOE Hydrogen Review May 2007

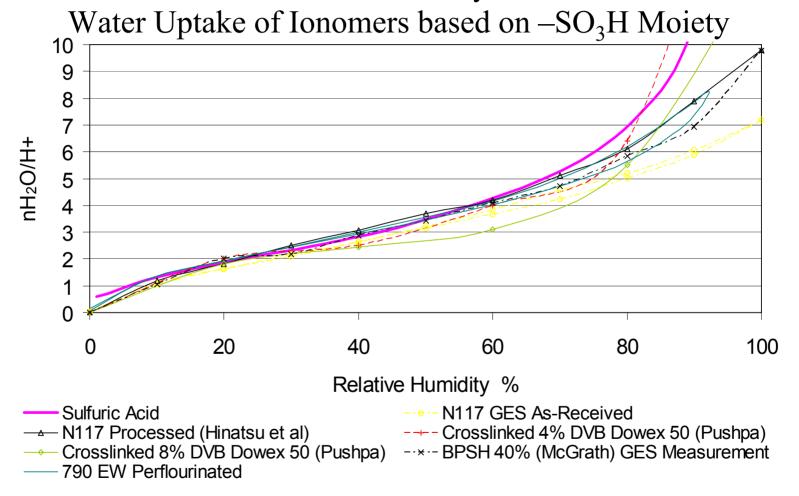
APPROACH:

- DOE Hydrogen Program
- COMPOSITE POLYMER ELECTROLYTE MEMBRANES DSM is high acid content membrane reinforced with high strength polymer support

< 1 Mil Diameter hole Nearly 1,000,000 holes/in²

Mag:1500 kV:20 Nafion coated 6um h

DOE Hydrogen Review May 2007

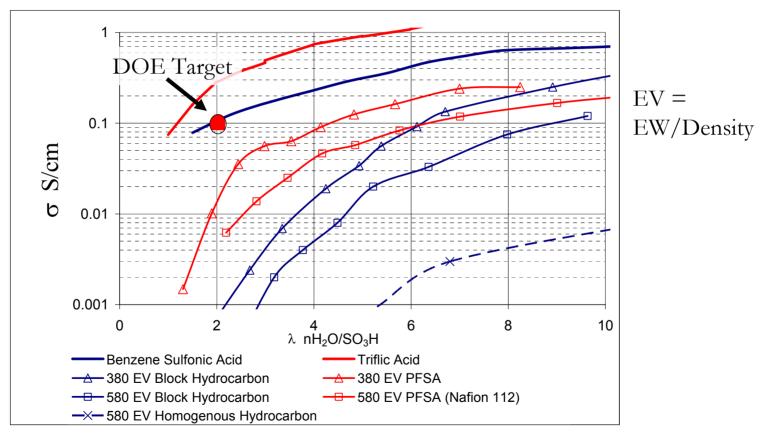

APPROACH: Why DSMs?

• Limitations of Ionomers based on –SO₃H functionality

Water uptake/retention as a function of RH
Conductivity Limitations
Dependence on Water
Functionality

APPROACH: Why DSMs?

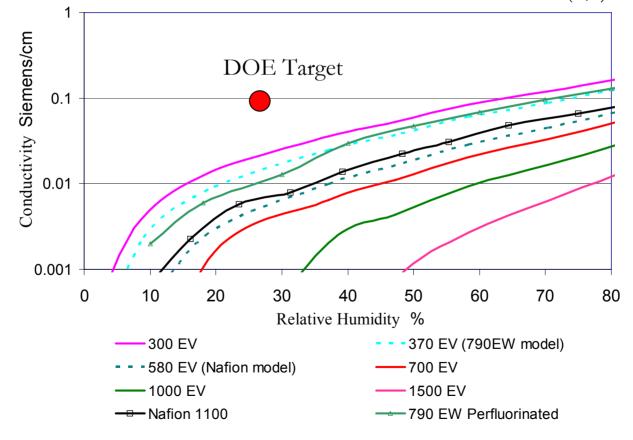
Water Content is the same regardless of pendant group


DOE Hydrogen Review May 2007

Giner Electrochemical Systems, LLC — APPROACH: Why DSMs?

Importance Of Ionic Functional Group, Morphology

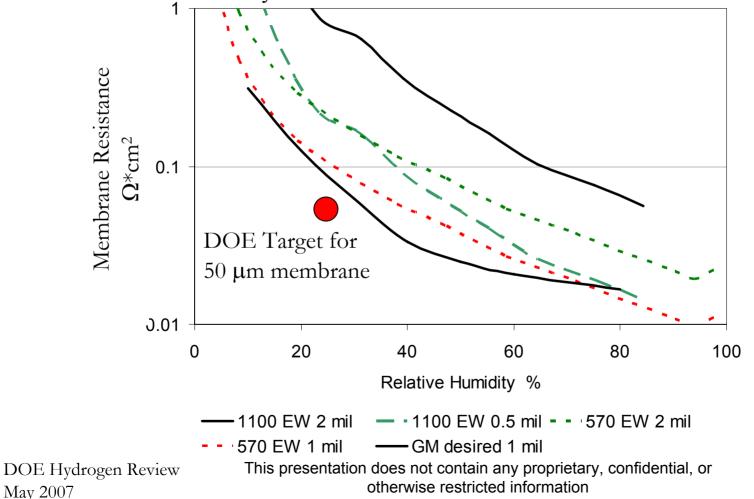
Conductivity of Various Ionomers and Model Compounds at 80°C



DOE Hydrogen Review May 2007

APPROACH: Why DSMs?

Model to Predict Conductivity as a function of RH, Temperature and membrane EW $\sigma = \sigma_{model acid(T,\lambda)}(c - c_o)^n$


DOE Hydrogen Review May 2007

APPROACH: Why DSMs?

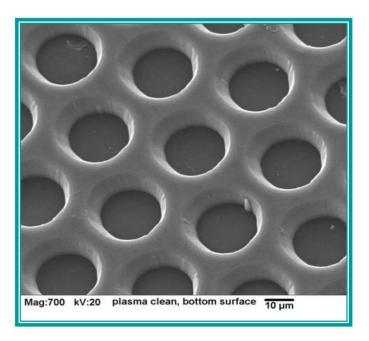
Limitations of Ionomers Based on -SO₃H Moiety

Predicted Conductivity at 100°C for Various Perfluorinated Membranes

APPROACH: WHY DSMs?

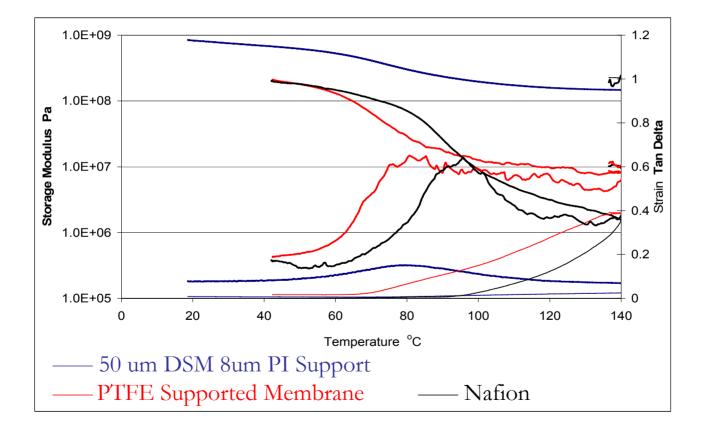
CONCLUSIONS

- •-SO₃H Polymers will need
 - •Very low EW
 - •Perfluorinated End Groups
 - •To be very thin


•THESE THREE REQUIREMENTS LEAD TO POOR MECHANICALS

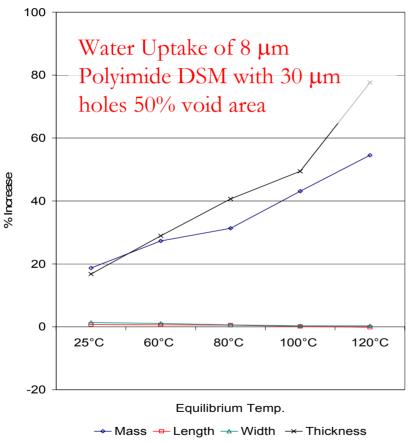
-Giner Electrochemical Systems, LLC — APPROACH

Dimensionally Stable Membrane Support Structures Used to Date


Material, condition	Young's Modulus (Mpa)
Nafion 112 Dry 20°C	300
Nafion 112 Wet 80°C	70
Poly(tetrafluoroethylene) (PTFE)	400
Polysulfone	2600
Poly(etherether-ketone) (PEEK)	2700
Polyimide (PI), e.g., Kapton [®]	2900

-Giner Electrochemical Systems, LLC —— ACCOMPLISHMENTS

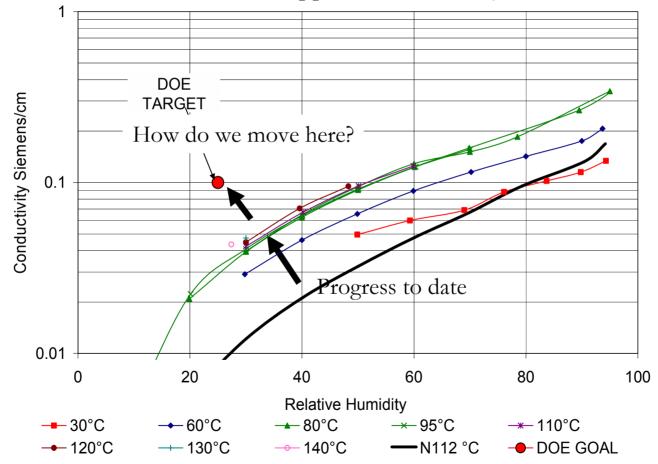
Increased Modulus of Support Material Leads to Proportional Increase in Composite Material



DOE Hydrogen Review May 2007

ACCOMPLISHMENTS:

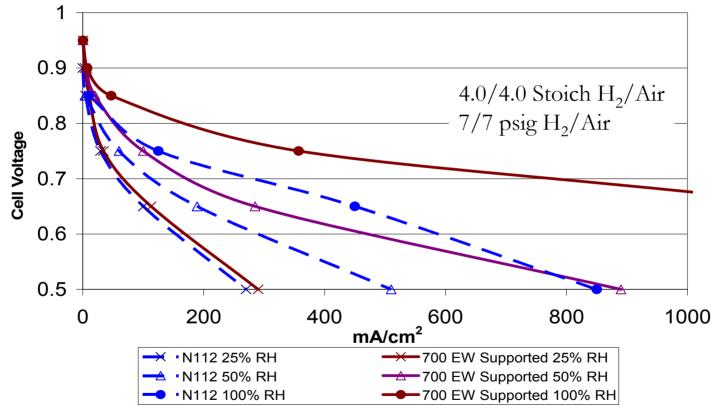
Effect of Pore Size on Water Uptake


- No macroscopic swelling on the X-Y plane
- Effect is the same for
 - pore sizes of 10-40μm
 - Support thickness of 8-25 µm
 - EW of fill of 700-1100 EW
- Membrane retains integrity even after tested at 120°C in water.
- SIGNIFICANTLY Improves, handling and storage of membranes
- We were not able to generate 75% void area materials

DOE Hydrogen Review May 2007

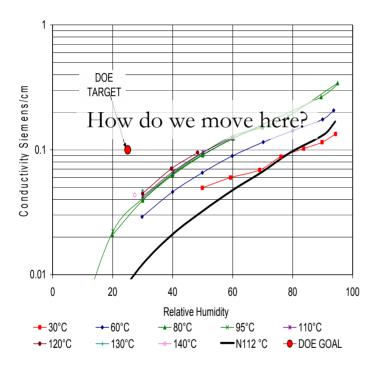
-Giner Electrochemical Systems, LLC ACCOMPLISHMENTS In-Plane Conductivity

700 EW Membrane with DSM Support, Conductivity as a function of RH


DOE Hydrogen Review May 2007

ACCOMPLISHMENTS

Fuel Cell Performance


Nafion 112 and 2 mil 700 EW Supported Membrane 95°C

25% RH data much worse than predicted based on DSM conductivity and high-frequency resistance: Work to do on the catalyst layer

DOE Hydrogen Review May 2007

ACCOMPLISHMENTS: Alternative Synthesis

Synthesis of new PFSA Monomers Working with SUNY-ESF to make new copolymers

CF2=CF OCF2CF(CF3)OCF2CF2SO2F

+ ?

Three non-PTFE copolymers successfully synthesized. EW from 800-1300. Difficulty in getting low EW materials

DOE Hydrogen Review May 2007 This presentation does not contain any proprietary, confidential, or otherwise restricted information

DOE Hydrogen Program

ACCOMPLISHMENTS: Alternative Synthesis

- Need lower EW PFSA's
- Functional Homopolymer has been synthesized
- $(CF_2-CF)_n$ $CF_2CF(CF_3)OCF_2CF_2SO_2F$
- Water Soluble
- Terrible Film-Former
- Difficult to hydrolyze to completion

Believe that cracking, at low RH leads to higher resistance

DOE Hydrogen Review May 2007

FUTURE WORK

- Believe that we have achieved Year 2 Milestone using both approaches
 - Demonstrate, by the 3rd Quarter, membrane conductivity of 0.07 S/cm at 80% relative humidity at room temperature using non-Nafion materials. Samples will be prepared and delivered to the Topic 2 Awardee.
 Laser-drilled ionomers demonstrate 0.1 S/cm at 80% RH and 30°C
 New PFSA ionomer demonstrates .07 S/cm at 80% RH and 30°C
- Continue to characterize composite materials for fuel cell performance/durability
- Continue to synthesize and characterize new perfluorinated ionomers
- Incorporate new ionomers in three-dimensional supports

SUMMARY

- Year 1 Milestones Achieved
 - DSMs with a wide range of pore size and thickness restrain x-y swelling
 - Polyimide and polysulfone both shown to be effective supports
 - Effective methods of generating new PFSA polymers have been generated
- Year 2 Milestones Achieved
 - Conductivity targets have been met
 - Will continue fuel cell performance and durability testing
- To reach ultimate DOE Goals we will need even lower EW materials
 - We are working on it