

Mass Production Cost Estimation for Direct H₂ PEM Fuel Cell System for Automotive Applications Brian D. James & Jeffrey A. Kalinoski DOE Hydrogen Program Review May, 18, 2007

> Directed Technologies, Inc. 3601 Wilson Blvd, Suite 650 Arlington, VA 22201 voice: 703.243.3383 fax: 703.243.2724

Project ID # FC28

Overview

Timeline

- Start 2/17/06
- Finish 2/16/08
- 63% complete

Barriers

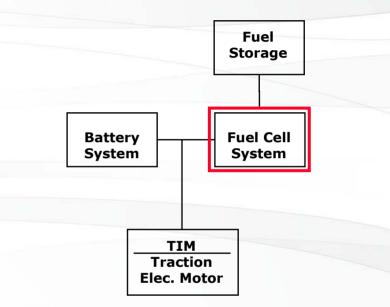
- Manufacturing Costs
- Materials Costs (particularly precious metal catalysts)
- Efficiency-Power Density Ratio

DOE Cost Targets

Characteristic	Units	2006	2010	2015
Stack Cost	\$/kW _e	\$70	\$25	\$15
System Cost	\$/kW _e	\$110	\$45	\$30

Collaborations

• Extensive interaction with industry/researchers to solicit design & manufacturing metrics as input to cost analysis.



Budget

- Total project funding
 - \$325K
 - Contractor share: \$0
- Funding for FY06
 - \$150K
- Funding for FY07
 - \$100K (+\$75k pending)

Objectives

- 1. Identify the <u>lowest cost system design</u> and <u>manufacturing methods</u> for an 80 kW_e direct-H₂ automotive PEMFC system based on 3 technology levels:
 - Current status (2006)
 - 2010 projected technology
 - 2015 projected technology
- 2. Determine costs for these 3 tech level systems at 5 production rates:
 - 1,000 vehicles per year
 - 30,000 vehicles per year
 - 80,000 vehicles per year
 - 130,000 vehicles per year
 - 500,000 vehicles per year
- 3. Analyze, quantify & document impact of system performance on cost
 - Use cost results to guide future component development

Project covers complete FC system (specifically excluding battery, traction motor/inverter, and storage)

Project Approach

Principles:

- Base on detailed, rigorous and consistent system design
- Consider current, 2010, and 2015 technologies
- Emphasize realistic and complete cost assessment

Approach:

- 1. Research (literature review, conducting interviews, etc.)
- 2. Begin with System modeling (HYSYS environment)
- 3. Design each component (materials, dimensions, thickness, etc.)
- 4. Use DFMA[®] redesign and costing techniques
 - DFMA[®] = Design for Manufacturing & Assembly*
 - Adjust for manufacturing rates (material cost, lot size, setup costs, manufacturing methods, markup rates, etc.)

DTI DFMA®-Style Costing Methodology

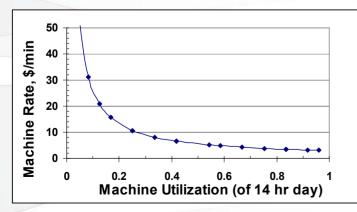
• DFMA[®] (Design for Manufacturing and Assembly) is a registered trademark of Boothroyd-Dewhurst Inc.

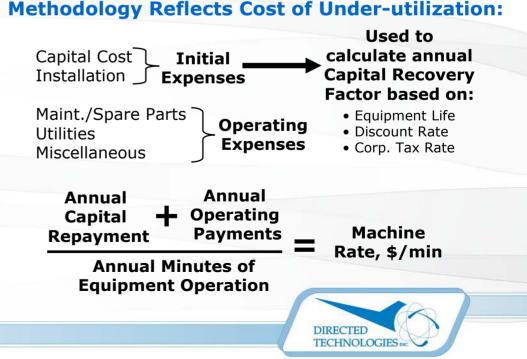
- Used by hundreds of companies world-wide
- Basis of Ford Motor Co. design/costing method for past 20+ years

• DTI practices are a blend of:

 "Textbook" DFMA[®], industry standards & practices, DFMA[®] software, innovation and practicality

Estimated Cost = (Material Cost + Processing Cost + Assembly Cost) x Markup Factor


Manufacturing rate cost factors:


- 1. Material Costs
- 2. Manufacturing Method

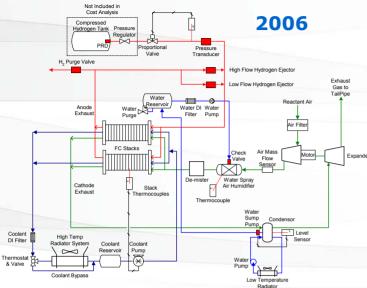
3. Machine Rate

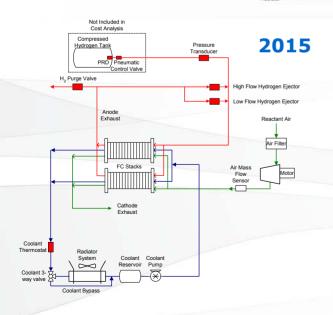
page 5

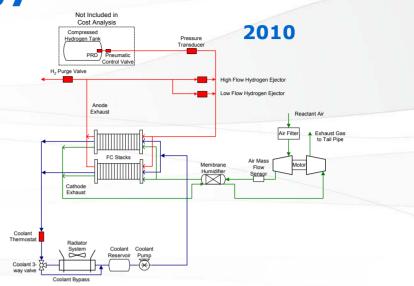
4. Tooling Amortization

Included

Key Tech. Targets Define System


			1	1
	units	2006	2010	2015
DOE Tech Targets that drive analysis:				
Stack Efficiency @ Rated Power	%	55%	55%	55%
MEA Areal Power Density @ Peak Power	mW/cm ²	700	1000	1000
Total Catalyst Loading	g/kW _{gross}	0.65	0.29	0.19
Key Derived Performance Parameters:				
Key Derived Performance Parameters: System Gross Electric Power (Output)	g/kW _{gross}	90.6	87.6	87.1
	g/kW _{gross} cm ²	90.6 348	87.6 235	87.1 234
	- 0			


• A few key DOE Tech. Target values are used to anchor system definition


• All other system parameters flow from DTI calculations & judgment

Different Technology Schematics

Changes from 2006 to 2010:

- Higher temperature, smaller radiator
- Use of membrane humidifier (instead of water spray)
- Lower pressure
- Centrifugal compressor/expander (instead of twin lobe compressor)

Changes from 2010 to 2015:

- Higher temperature, smaller radiator
- No humidification
- Lower pressure
- Smaller compressor
- No expander

System Comparison

	Current Technology System	2010 Technology System	2015 Technology System
Power Density (mW/cm ²)	700	1000	1000
Total Pt loading (mg/cm ²)	0.65	0.29	0.19
Operating Pressure (atm)	2.3	2	1.5
Peak Stack Temp. (°C)	70-90	99	120
Membrane Material	Nafion on ePTFE	Advanced High-Temperature Membrane	Advanced High-Temperature Membrane
Radiator/Cooling System	Aluminum Radiator, Water/Glycol coolant, Dl filter	Smaller Aluminum Radiator, Water/Glycol coolant, DI filter	Smaller Aluminum Radiator, Water/Glycol coolant, DI filter
Bipolar Plates	Stamped Stainless Steel (uncoated) or Injection Molded Carbon/Polymer	Stamped Stainless Steel (uncoated) or Injection Molded Carbon/Polymer	Stamped Stainless Steel (uncoated) or Injection Molded Carbon/Polymer
Air Compression	Twin Lobe Compressor, Twin Lobe Expander	Centifugal Compressor, Radial Inflow Expander	Centifugal Compressor, No Expander
Gas Diffusion Layers	Carbon Paper Macroporous Layer with Microporous layer applied on top	Carbon Paper Macroporous Layer with Microporous layer applied on top	Carbon Paper Macroporous Layer with Microporous layer applied on top
Catalyst Application	Double-sided vertical die-slot coating of membrane	Double-sided vertical die-slot coating of membrane	Double-sided vertical die-slot coating of membran
Hot Pressing	Hot pressing of MEA	Hot pressing of MEA	Hot pressing of MEA
Air Humidification	Water spray injection	Polyamide Membrane	None.
Hydrogen Humidification	None.	None.	None.
Exhaust water recovery	SS Condenser (Liquid/Gas HX)	SS Condenser (Liquid/Gas HX)	None.
MEA Containment	MEA Frame with Hot Pressing	MEA Frame with Hot Pressing	MEA Frame with Hot Pressing
Gaskets	Silicon Injection molding of gasket around MEA	Silicon Injection molding of gasket around MEA	Silicon Injection molding of gasket around MEA
Freeze Protection	Drain water at shutdown	Drain water at shutdown	Drain water at shutdown
Hydrogen Sensors	2 H2 Sensors (for FC sys), 1 H2 Sensor (for passenger cabin: not in cost estimate), 1 H2 Sensor (for fuel sys: not in cost estimate	1 H2 Sensors (for FC sys), 1 H2 Sensor (for passenger cabin: not in cost estimate), 1 H2 Sensor (for fuel sys: not in cost estimate	No H2 sensors.
End Plates/Compression System	Composite molded endplates with compression bands	Composite molded endplates with compression bands	Composite molded endplates with compression bands
Stack/System Conditioning	5 hours of power conditioning - from UTC's US Patent #7,078,118	4 hours of power conditioning - from UTC's US Patent #7,078,118	3 hours of power conditioning - from UTC's US Patent #7,078,118

Bipolar Plates

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
	Material (\$/stack)	\$22.51	\$22.51	\$22.51	\$22.51	\$22.51
9	Manufacturing (\$/stack)	\$104.38	\$89.27	\$90.31	\$90.55	\$89.44
00	Tooling (\$/stack)	\$10.74	\$7.73	\$7.82	\$7.85	\$7.74
Ñ	Total Cost (\$/stack)	\$137.63	\$119.50	\$120.64	\$120.90	\$119.69
	Total Cost (\$/kW _{gross})	\$6.08	\$5.28	\$5.33	\$5.34	\$5.29
	Material (\$/stack)	\$15.60	\$15.60	\$15.60	\$15.60	\$15.60
0	Manufacturing (\$/stack)	\$77.60	\$64.79	\$61.04	\$61.90	\$61.04
201	Tooling (\$/stack)	\$10.74	\$6.98	\$7.09	\$7.20	\$7.09
2	Total Cost (\$/stack)	\$103.94	\$87.37	\$83.72	\$84.70	\$83.72
	Total Cost (\$/kW _{gross})	\$4.75	\$3.99	\$3.82	\$3.87	\$3.82
	Material (\$/stack)	\$15.51	\$15.51	\$15.51	\$15.51	\$15.51
2	Manufacturing (\$/stack)	\$77.28	\$64.46	\$60.72	\$61.59	\$60.72
201	Tooling (\$/stack)	\$10.74	\$6.98	\$7.09	\$7.20	\$7.09
2	Total Cost (\$/stack)	\$103.54	\$86.95	\$83.32	\$84.30	\$83.32
	Total Cost (\$/kW _{gross})	\$4.76	\$3.99	\$3.83	\$3.87	\$3.83

Injection Molding

• 50/50 Polypropylene/Carbon

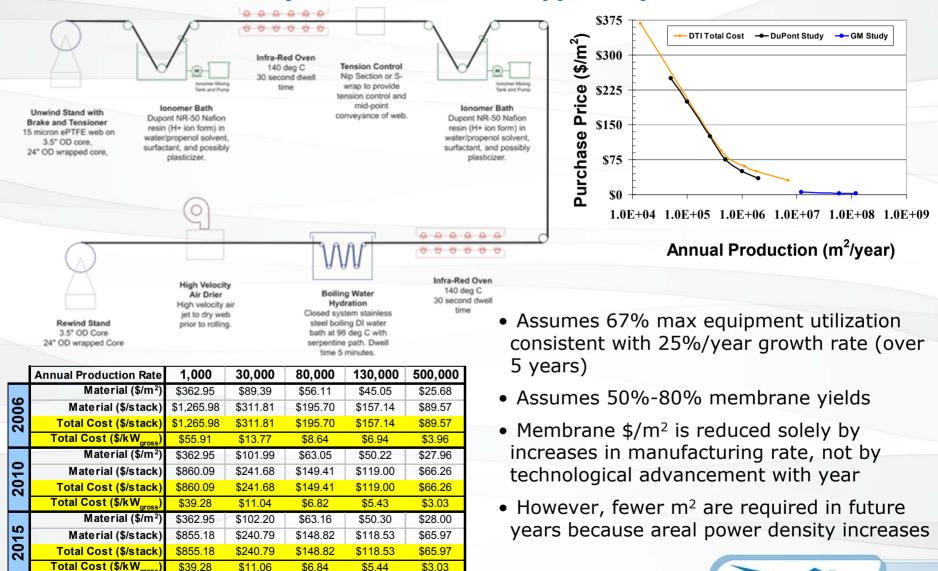
• Plate can be flipped 180 degrees, used for both Cathode & Anode

- Lowers manufacturing cost by doubling plate production & eliminating 2nd production line
- 50/50 mix of polypropylene and carbon powder
- ~30 second cycle time

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
	Material (\$/stack)	\$56.86	\$56.86	\$56.86	\$56.86	\$56.86
9	Manufacturing (\$/stack)	\$14.83	\$3.45	\$3.34	\$3.42	\$3.33
00	Tooling (\$/stack)	\$25.74	\$26.07	\$25.99	\$26.11	\$26.13
3	Total Cost (\$/stack)	\$97.42	\$86.39	\$86.20	\$86.39	\$86.32
	Total Cost (\$/kW _{gross})	\$4.30	\$3.82	\$3.81	\$3.82	\$3.81
	Material (\$/stack)	\$38.49	\$38.49	\$38.49	\$38.49	\$38.49
0	Manufacturing (\$/stack)	\$14.01	\$3.27	\$3.17	\$3.15	\$3.08
5	Tooling (\$/stack)	\$22.21	\$22.56	\$22.49	\$22.59	\$22.50
20	Total Cost (\$/stack)	\$74.72	\$64.33	\$64.15	\$64.22	\$64.07
	Total Cost (\$/kW _{gross})	\$3.41	\$2.94	\$2.93	\$2.93	\$2.93
	Material (\$/stack)	\$38.27	\$38.27	\$38.27	\$38.27	\$38.27
S	Manufacturing (\$/stack)	\$14.00	\$3.27	\$3.17	\$3.14	\$3.08
0	Tooling (\$/stack)	\$22.17	\$22.52	\$22.45	\$22.54	\$22.45
3	Total Cost (\$/stack)	\$74.44	\$64.06	\$63.89	\$63.96	\$63.81
	Total Cost (\$/kW _{gross})	\$3.42	\$2.94	\$2.93	\$2.94	\$2.93

Stamping

- 0.75 mm thick uncoated 310 Stainless Steel
- 4-stage Progressive Die


• Greater tooling costs of progressive setup offset significantly by reduced labor & energy costs over individual die setup

• Rapid plate production (up to 80 plates/minute)

Proton Exchange Membrane

(Based on Gore-like approach)

DIRECTED

TECHNOLOGIES

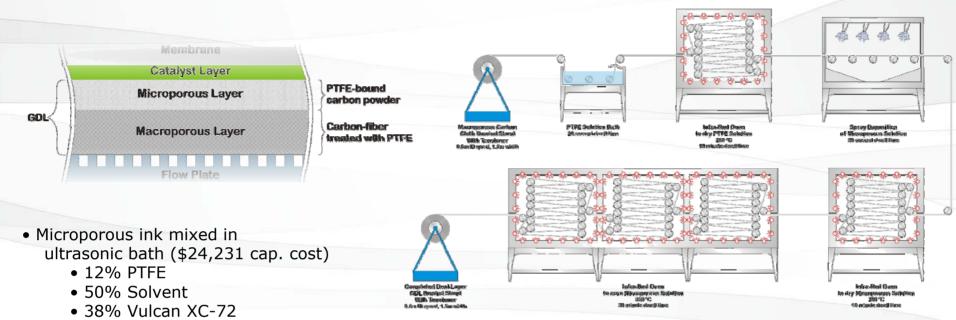
Catalyst Ink & Catalyzation

Catalyst Preparation

 Batch Pt-precipitation onto Vulcan XC-72 carbon support via a hexachloroplatinic acid (CPA) precursor (notional E-TEK-like precipitation method

Catalyst Ink composition

- 7%(wt) Nafion Ionomer
- 15%(wt) Carbon supported Pt (40%wt Pt on Vulcan XC-72)
- 78%(wt) Solvent (50/50 mixture of methanol and DI water)
- Mixed Ultrasonically
- Material costs are dominated by platinum cost (\$1,175/troy oz.)


	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
	Material (\$/stack)	\$1,479.46	\$1,018.69	\$966.56	\$947.35	\$909.88
90	Manufacturing (\$/stack)	\$121.80	\$4.38	\$3.32	\$3.08	\$2.48
20	Total Cost (\$/stack)	\$1,601.25	\$1,023.08	\$969.89	\$950.43	\$912.36
	Total Cost (\$/kW _{gross})	\$70.72	\$45.19	\$42.84	\$41.98	\$40.30
	Material (\$/stack)	\$448.44	\$308.78	\$292.98	\$287.15	\$275.80
10	Manufacturing (\$/stack)	\$121.70	\$4.29	\$3.23	\$2.08	\$2.13
20	Total Cost (\$/stack)	\$570.14	\$313.07	\$296.21	\$289.23	\$277.93
	Total Cost (\$/kW _{gross})	\$26.04	\$14.30	\$13.53	\$13.21	\$12.69
	Material (\$/stack)	\$292.13	\$201.15	\$190.86	\$187.06	\$179.66
15	Manufacturing (\$/stack)	\$121.69	\$4.28	\$3.22	\$2.07	\$2.12
20	Total Cost (\$/stack)	\$413.82	\$205.43	\$194.08	\$189.13	\$181.79
	Total Cost (\$/kW _{gross})	\$19.01	\$9.44	\$8.91	\$8.69	\$8.35

Coatema VertiCoater

- Dual-sided Vertical coating process
 - modeled as Coatema VertiCoater
 - die-slot catalyst applicator
- Apply platinum catalyst slurry simultaneously to both sides of the membrane
- Maximum roll width of 1 meter
- Line speed of 10m/min
- \$750,000 capital cost/line (not counting 40% for installation)

Dual-Layer GDL Process Line

- Macroporous GDL Carbon Paper based on price quote of SGL Carbon's GDL 34 BA, $114-12/m^2$

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
	Material (\$/stack)	\$797.62	\$498.15	\$282.90	\$208.03	\$86.37
06	Manufacturing (\$/stack)	\$175.43	\$20.22	\$15.91	\$16.24	\$15.39
20	Total Cost (\$/stack)	\$973.05	\$518.36	\$298.81	\$224.27	\$101.76
	Total Cost (\$/kW _{gross})	\$42.98	\$22.89	\$13.20	\$9.91	\$4.49
	Material (\$/stack)	\$541.63	\$338.27	\$192.10	\$141.26	\$58.64
10	Manufacturing (\$/stack)	\$174.88	\$13.93	\$13.22	\$13.05	\$12.78
20	Total Cost (\$/stack)	\$716.51	\$352.20	\$205.31	\$154.31	\$71.43
	Total Cost (\$/kW _{gross})	\$32.72	\$16.08	\$9.38	\$7.05	\$3.26
	Material (\$/stack)	\$538.76	\$336.47	\$191.07	\$140.50	\$58.32
15	Manufacturing (\$/stack)	\$174.88	\$13.93	\$13.21	\$13.04	\$12.78
20	Total Cost (\$/stack)	\$713.64	\$350.40	\$204.28	\$153.55	\$71.10
	Total Cost (\$/kW _{gross})	\$32.78	\$16.09	\$9.38	\$7.05	\$3.27

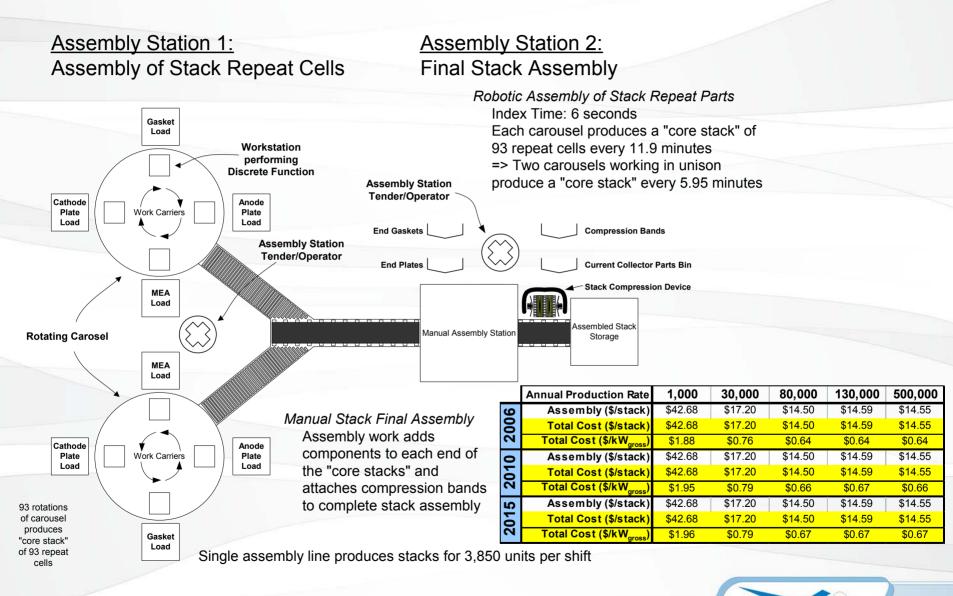
Process

- **1)** Dip macroporous GDL in PTFE solution bath
- 2) Dry in oven 1
- **3)** Spray apply microporous ink to macroporous substrate
- 4) Dry in oven 2
- 5) Cure in oven 3
- Based on the work of Branko N. Popov, et al., University of South Carolina

Other Stack Components

	20	006	2010		2015		
System Production Rate	1k/yr	500k/yr	1k/yr	500k/yr	1k/yr	500k/yr	Fabrication Method:
Hot Pressing the MEA	\$1.26	\$0.28	\$1.28	\$0.24	\$1.29	\$0.24	Hot-Pressing
Cutting & Slitting the MEA	\$1.58	\$0.06	\$1.64	\$0.06	\$1.65	\$0.06	Roll-fed Cutting & Slitting
MEA Frame-Gasket	\$3.03	\$1.95	\$3.29	\$1.70	\$3.30	\$1.70	Insertion Molding
Coolant Gasket	\$2.50	\$1.54	\$2.77	\$1.27	\$2.78	\$1.28	Injection Molding
Endplates & Current Collectors	\$2.41	\$1.15	\$1.84	\$0.84	\$1.85	\$0.85	Compression Molding, Blanking

Total Cost (\$/kW)


• These components are a small fraction of the total cost

None of these fabrication methods change with production rate

- Many repeat parts
- High machine utilization even at low production

Stack Assembly

DIRECTED

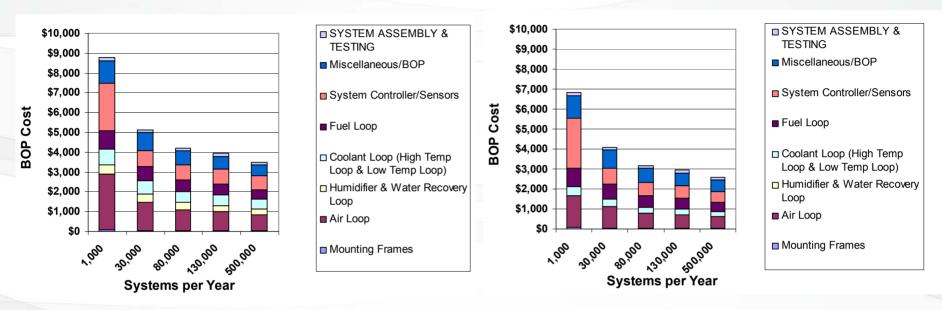
TECHNOLOGIES

System Assembly & Conditioning

- Bill of Materials (BOM) components divided into 5 main categories and a notional installation time was attributed to each.
- Approx. system assembly time: 3 hrs
- Full Manual Assembly for 1k/yr manufacturing rate.
- 10 station assembly line used for all other rates

- Stacks "conditioned" for enhanced performance
- Based on UTC Fuel Cells Patent 7,078,118
- Stacks condition per "Applied Voltage Embodiment"
- 10 stacks conditioned simultaneously
- Load bank ~\$100k
- Conditioning of stacks staggered to limit peak testing load to ~50kW
- Stacks conditioned to achieve 95% of max performance (~5 hrs; max performance requires ~13 hrs)

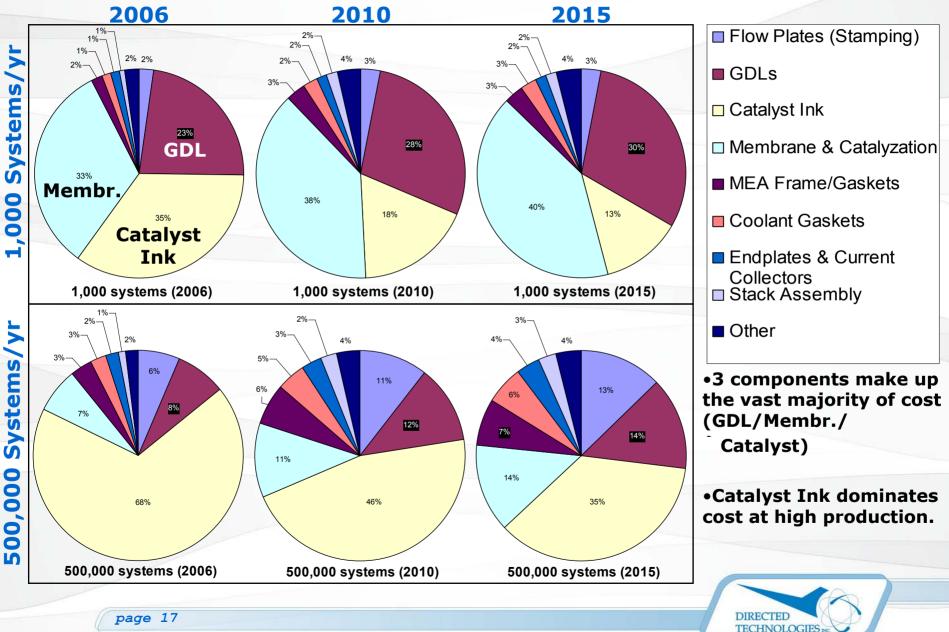
	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
2006	Assembly (\$/system)	\$187.09	\$149.67	\$149.67	\$149.67	\$149.67
20	Total Cost (\$/kW _{net})	\$2.34	\$1.87	\$1.87	\$1.87	\$1.87
2010	Assembly (\$/system)	\$187.09	\$149.67	\$149.67	\$149.67	\$149.67
20	Total Cost (\$/kW _{net})	\$2.34	\$1.87	\$1.87	\$1.87	\$1.87
2015	Assembly (\$/system)	\$187.09	\$149.67	\$149.67	\$149.67	\$149.67
20	Total Cost (\$/kW _{net})	\$2.34	\$1.87	\$1.87	\$1.87	\$1.87


	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
6	Conditioning/Testing (\$/stack)	\$18.84	\$12.37	\$12.20	\$12.24	\$12.18
00	Total Cost (\$/stack)	\$18.84	\$12.37	\$12.20	\$12.24	\$12.18
2	Total Cost (\$/kW _{gross})	\$0.83	\$0.55	\$0.54	\$0.54	\$0.54
0	Conditioning/Testing (\$/stack)	\$17.12	\$9.97	\$9.84	\$9.81	\$9.74
01	Total Cost (\$/stack)	\$17.12	\$9.97	\$9.84	\$9.81	\$9.74
2	Total Cost (\$/kW _{gross})	\$0.78	\$0.46	\$0.45	\$0.45	\$0.44
5	Conditioning/Testing (\$/stack)	\$15.39	\$7.56	\$7.35	\$7.38	\$7.32
201	Total Cost (\$/stack)	\$15.39	\$7.56	\$7.35	\$7.38	\$7.32
2	Total Cost (\$/kW _{gross})	\$0.71	\$0.35	\$0.34	\$0.34	\$0.34

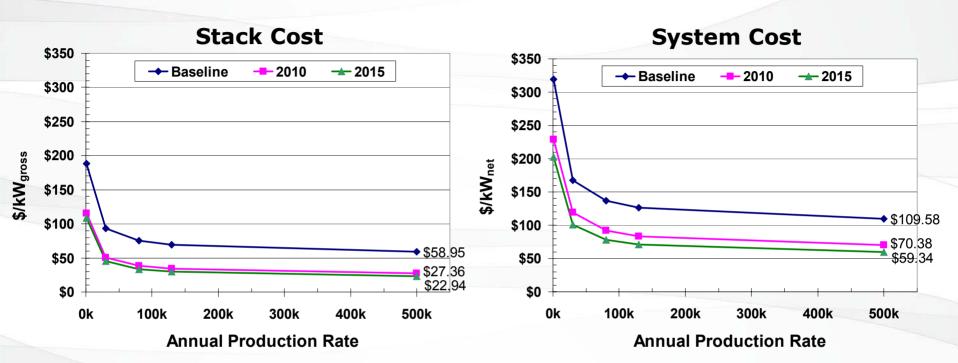
Balance of Plant

Current Technology System

2015 Technology System


- Increases in manufacturing rate leads to largest savings.
- Air compressors and Sensors are the two categories that have the largest \$ decline, together yielding 70% of the BOP cost decline from low production to high production.

• Technology changes yields lesser BOP savings and comes in form of reduced/eliminated components.


• Simplifications of Air, Humidifier, & Coolant Loops yield majority of technology improvement savings.

Stack Component Cost Distribution

Stack & System Costs vs. Annual Production Rate

Source	Characteristic	Units	2006	2010	2015
DOE Target:	Stack Cost	\$/kW _e	\$70	\$25	\$15
DTI Estimate:	Stack Cost	\$/kW _e	\$67	\$30	\$25

DOE Target:	System Cost	\$/kW _e	\$110	\$45	\$30
DTI Estimate:	System Cost	\$/kW _e	\$110	\$70	\$59

Future Work

Complete Annual Report

~70 page report detailing all assumptions and results

Annual Updates

• Year 2: Annual Update

- Due February 2008
- Re-evaluation of costs to reflect 2007 progress
- Exploration of alternate fabrication techniques
- Refine BOP cost estimates

• Year 3: Annual Update (Option)

– Due February 2009

Year 4: Annual Update (Option)

– Due February 2010

Year 5: Annual Update (Option)

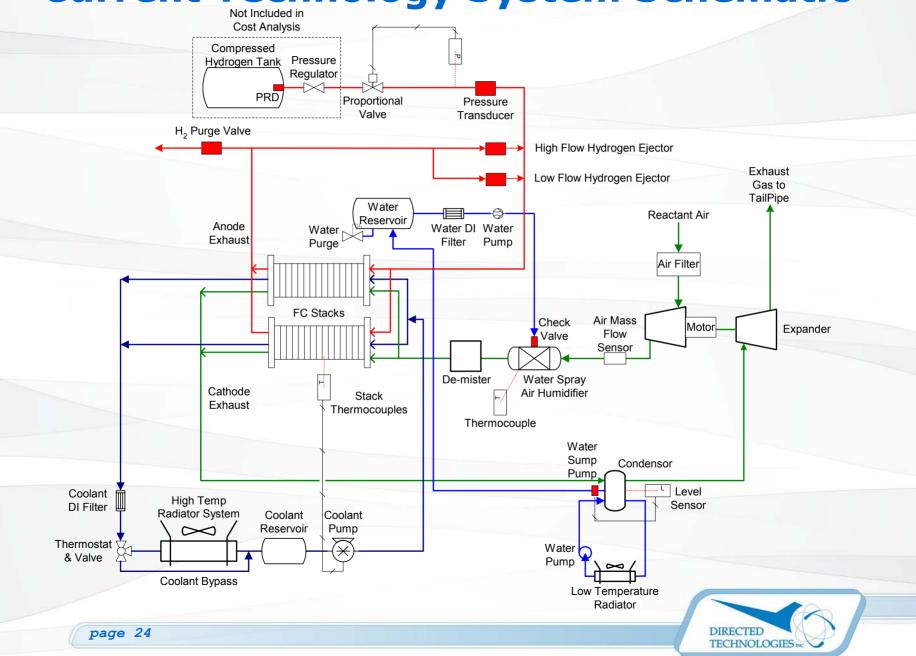
- Due February 2011

TECHNOLOGIES

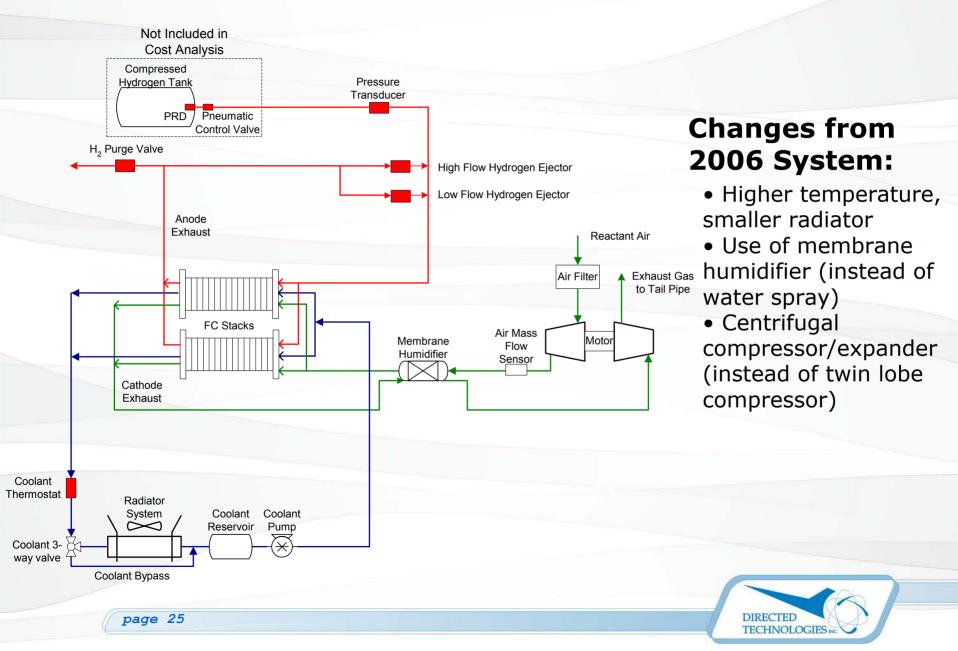
DOE Fuel Cell Technical Targets

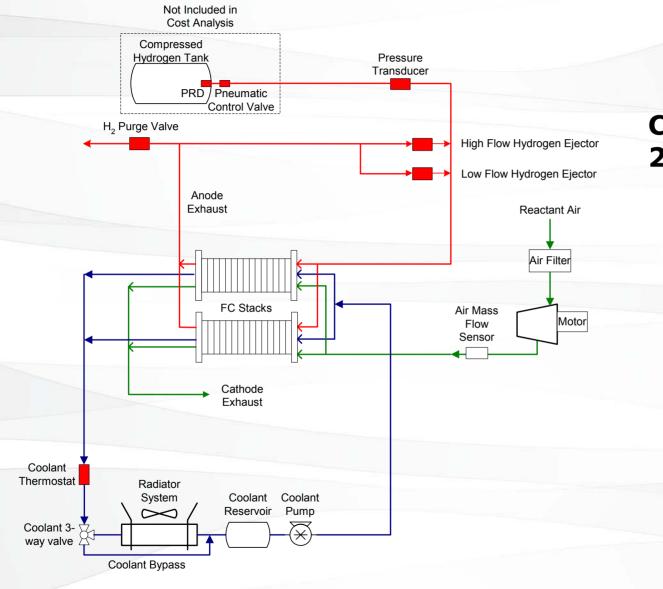
		2005		
	units	status	2010	2015
Energy efficiency @ 25% of rated power	%	59%	60%	60%
Energy efficiency @ rated power	%	50%	50%	50%
Power density	W/L	500	650	650
Specific power	W/kg	470	650	650
Cost	\$/kW _e	110	45	30
Transient response (time for 10% to 90% of rated power)	Sec	1.5	1	1
Cold startup time to 50% of rated power		0	0	0
Cold startup time to 50% of rated power @ -20°C ambient temperature	sec	20	30	30
@ +20°C ambient temperature	sec	<10	5	5
Start up and shut down energy		0	0	0
from -20°C ambient temperature	MJ	7.5	5	5
from +20°C ambient temperature	MJ	n/a	1	1
Durability with cycling	hrs	~1000	5000	5000
Unassisted start from	°C	-20	-40	-40

Stack power density	W/L	1,500	2,000	2,000
Stack specific power	W/kg	1,400	2,000	2,000
Stack efficiency @ 25% of rated power	%	65%	65%	65%
	%	55%	55%	55%
Stack efficiency @ rated power	\$/kW _e	70	25	15
Durability with cycling	hours	200	5000	5000
Transient response (time for 10% to 90% of rated power)	Se C	1	1	1
Cold start-up time to 50% of rated power		0	0	0
a 200C ambient temperature	sec	20	30	30
@ +20°C ambient temperature @ +20°C ambient temperature	sec	<10	5	5
Start up and shut down energy		0	0	0
from -20°C ambient temperature	MJ	7.5	5	5
from +20°C ambient temperature	MJ	n/a	1	1
Unassisted start from	°C	-20	-40	-40



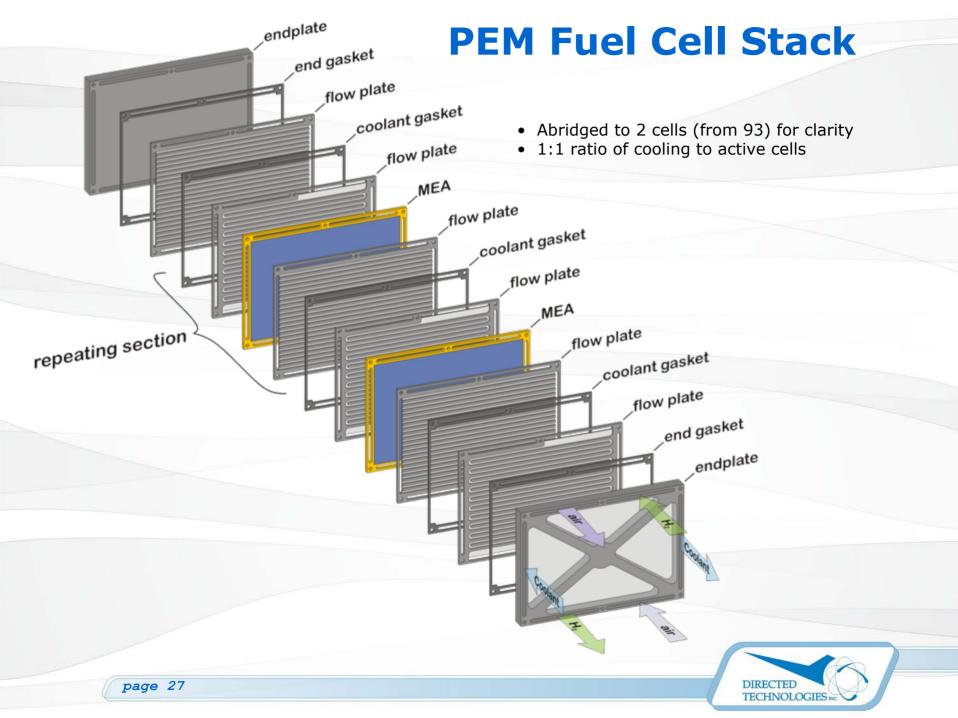
System Performance Assumptions


	units	2006	2010	2015
Annual Production Rate #1	systems/year	1,000	1,000	1,000
Annual Production Rate #2	systems/year	30,000	30,000	30,000
Annual Production Rate #3	systems/year	80,000	80,000	80,000
Annual Production Rate #4	systems/year	130,000	130,000	130,000
Annual Production Rate #5	systems/year	500,000	500,000	500,000
		0	0	0
System Net Electric Power (Output)	kW _{net}	80	80	80
System <u>Gross</u> Electric Power (Output)	kW _{gross}	90.6	87.6	87.1
		0	0	0
LHV of H ₂	kJ/kg	120,100	120, 100	120,100
% of O ₂ in Air (by Volume)	%	20.95%	20.95%	20.95%
Power consumed	kW	181.1	175.2	174.2
H ₂ consumed	kg/s	0.00151	0.00146	0.00145
Ratio of Oxygen to Hydrogen		7.93	7.93	7.93
Oxygen consumed	kg/s	0.01197	0.00018	0.00018
Air consumed	kg/s	0.05713	0.00088	0.00087
		0	0	0
Air compressor motor (net of expander)	kW	8.29	5.31	4.81
Coolant pump	kW	1.1	1.1	1.1
Coolant radiator fan	kW	0.59	0.59	0.59
Exhaust radiator fan	kW	0.38	0.38	0.38
Other (controller, instruments, etc.)	kW	0.2	0.2	0.2
				4 5
Operating Pressure (Peak)	atm °C	2.3	2.0	1.5
Stack Operating Temperature		70-90	99	120
MEA areal power density @ peak power	mW/cm ²	700	1000	1000
Current density @ peak power	mA/cm ²	1035	1478	1478
Active area	cm ²	348	235	234
Cell voltage @ peak power	V/cell	0.677	0.677	0.677
Cells/Stack		93	93	93
Stacks/System		4	4	4
System voltage @ peak power	V	251.7	251.7	251.7
System voltage @ open circuit (0.95V/cell)	V	353.4	353.4	353.4
	, 2	0	0	0
Anode (H ₂) Catalyst loading	mg/cm ²	0.3	0.09	0.04
Cathode (air) Catalyst loading	mg/cm ²	0.35	0.2	0.15
Total Catalyst loading	mg/cm ²	0.65	0.29	0.19
Non-Active But Catalyzed Area (% of active area)	%	3.26%	2.73%	2.72%
Total Catalyst Loading	g/kW _{gross}	0.959	0.298	0.195


Current Technology System Schematic

2010 Technology System Schematic

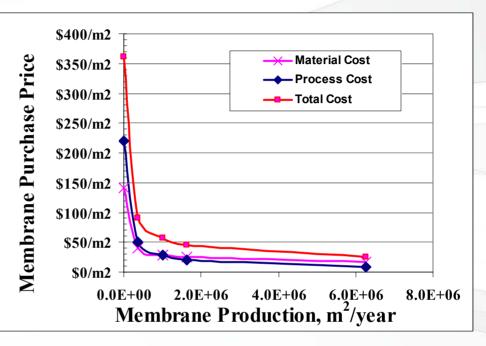
2015 Technology System Schematic



page 26

Changes from 2010 System:

- Higher temperature, smaller radiator
- No humidification
- Smaller compressor
- No expander


Membrane Assumptions

• Assumes 67% max equipment utilization consistent with 25%/year growth rate (over 5 years)

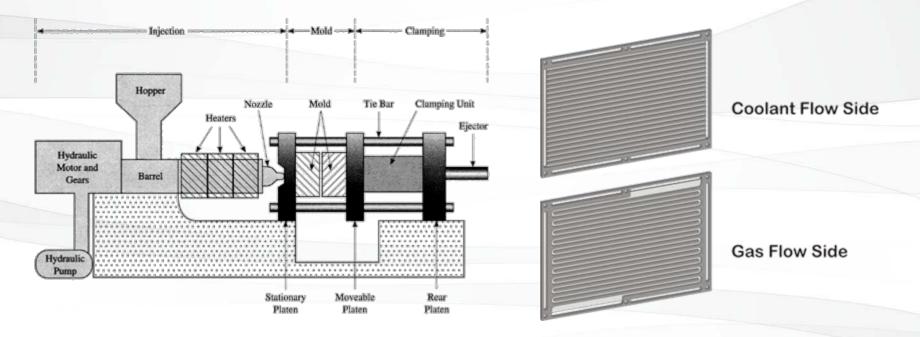
• Assumes 50%-80% membrane yields

• Membrane \$/m² is reduced solely by increases in manufacturing rate, not by technological advancement with year


• However, fewer m² are required in future years because areal power density increases

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
	Material (\$/m²)	\$362.95	\$89.39	\$56.11	\$45.05	\$25.68
90	Material (\$/stack)	\$1,265.98	\$311.81	\$195.70	\$157.14	\$89.57
2006	Total Cost (\$/stack)	\$1,265.98	\$311.81	\$195.70	\$157.14	\$89.57
	Total Cost (\$/kW _{gross})	\$55.91	\$13.77	\$8.64	\$6.94	\$3.96
	Material (\$/m ²)	\$362.95	\$101.99	\$63.05	\$50.22	\$27.96
10	Material (\$/stack)	\$860.09	\$241.68	\$149.41	\$119.00	\$66.26
201	Total Cost (\$/stack)	\$860.09	\$241.68	\$149.41	\$119.00	\$66.26
	Total Cost (\$/kW _{gross})	\$39.28	\$11.04	\$6.82	\$5.43	\$3.03
	Material (\$/m ²)	\$362.95	\$102.20	\$63.16	\$50.30	\$28.00
15	Material (\$/stack)	\$855.18	\$240.79	\$148.82	\$118.53	\$65.97
201	Total Cost (\$/stack)	\$855.18	\$240.79	\$148.82	\$118.53	\$65.97
	Total Cost (\$/kW _{gross})	\$39.28	\$11.06	\$6.84	\$5.44	\$3.03

Catalyst Ink


- Batch Pt-precipitation onto Vulcan XC-72 carbon support via a hexachloroplatinic acid (CPA) precursor (notional E-TEK-like precipitation method)
- 7%(wt) Nafion Ionomer
- 15%(wt) Carbon supported Pt (40%wt Pt on Vulcan XC-72)
- 78%(wt) Solvent (50/50 mixture of methanol and DI water)
- Mixed Ultrasonically
- Material costs are dominated by the cost of platinum (\$1,175/troy oz.)

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
	Material (\$/stack)	\$1,479.46	\$1,018.69	\$966.56	\$947.35	\$909.88
06	Manufacturing (\$/stack)	\$3.87	\$0.19	\$0.11	\$0.10	\$0.09
20	Total Cost (\$/stack)	\$1,483.33	\$1,018.89	\$966.68	\$947.45	\$909.97
	Total Cost (\$/kW _{gross})	\$65.51	\$45.00	\$42.69	\$41.85	\$40.19
	Material (\$/stack)	\$448.44	\$308.78	\$292.98	\$287.15	\$275.80
10	Manufacturing (\$/stack)	\$3.82	\$0.15	\$0.07	\$0.05	\$0.03
20	Total Cost (\$/stack)	\$452.26	\$308.93	\$293.04	\$287.20	\$275.82
	Total Cost (\$/kW _{gross})	\$20.65	\$14.11	\$13.38	\$13.12	\$12.60
	Material (\$/stack)	\$292.13	\$201.15	\$190.86	\$187.06	\$179.66
15	Manufacturing (\$/stack)	\$3.81	\$0.14	\$0.06	\$0.04	\$0.02
20	Total Cost (\$/stack)	\$295.94	\$201.29	\$190.92	\$187.10	\$179.68
	Total Cost (\$/kW _{gross})	\$13.59	\$9.25	\$8.77	\$8.59	\$8.25

Injection Molded Flowplates

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
-	Material (\$/stack)	\$22.51	\$22.51	\$22.51	\$22.51	\$22.51
9	Manufacturing (\$/stack)	\$104.38	\$89.27	\$90.31	\$90.55	\$89.44
200	Tooling (\$/stack)	\$10.74	\$7.73	\$7.82	\$7.85	\$7.74
2	Total Cost (\$/stack)	\$137.63	\$119.50	\$120.64	\$120.90	\$119.69
	Total Cost (\$/kW _{gross})	\$6.08	\$5.28	\$5.33	\$5.34	\$5.29
	Material (\$/stack)	\$15.60	\$15.60	\$15.60	\$15.60	\$15.60
0	Manufacturing (\$/stack)	\$77.60	\$64.79	\$61.04	\$61.90	\$61.04
201	Tooling (\$/stack)	\$10.74	\$6.98	\$7.09	\$7.20	\$7.09
7	Total Cost (\$/stack)	\$103.94	\$87.37	\$83.72	\$84.70	\$83.72
	Total Cost (\$/kW _{gross})	\$4.75	\$3.99	\$3.82	\$3.87	\$3.82
	Material (\$/stack)	\$15.51	\$15.51	\$15.51	\$15.51	\$15.51
2	Manufacturing (\$/stack)	\$77.28	\$64.46	\$60.72	\$61.59	\$60.72
01	Tooling (\$/stack)	\$10.74	\$6.98	\$7.09	\$7.20	\$7.09
N	Total Cost (\$/stack)	\$103.54	\$86.95	\$83.32	\$84.30	\$83.32
	Total Cost (\$/kW _{gross})	\$4.76	\$3.99	\$3.83	\$3.87	\$3.83

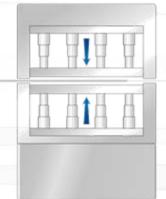
• Plate can be flipped 180 degrees, used for both Cathode & Anode

- Lowers manufacturing cost by doubling plate production & eliminating 2nd production line
- 50/50 mix of polypropylene and carbon powder
- ~30 second cycle time

Stamped Flow Plates

- Stamped using a 4-stage Progressive Die setup
- Greater tooling costs offset significantly by reduced labor & energy costs over individual die setup
- Lower tooling cost than Injection Molding
- Rapid plate production (up to 80 plates/minute)

\rightarrow		
heet Metal Indone Gaudi (Silecaring	bilds Extransit Manifolds Floatpaths (Silvest (Silvesting) (Silvestaur Forming) (Silvest	wrtregs
Sheet Metal Coil Fead	Progressive Stamping Press	Finished Plates
With Brales & Tensioner 0.1 num Mickness 310 Skaluess Sided 26. Tem width thickness pitch	Progressive Stamping Press 66 Strokestoinute 4 Die Sets chann width	
1 theta		


DIRECTED

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
	Material (\$/stack)	\$56.86	\$56.86	\$56.86	\$56.86	\$56.86
9	Manufacturing (\$/stack)	\$14.83	\$3.45	\$3.34	\$3.42	\$3.33
200	Tooling (\$/stack)	\$25.74	\$26.07	\$25.99	\$26.11	\$26.13
2	Total Cost (\$/stack)	\$97.42	\$86.39	\$86.20	\$86.39	\$86.32
	Total Cost (\$/kW _{gross})	\$4.30	\$3.82	\$3.81	\$3.82	\$3.81
	Material (\$/stack)	\$38.49	\$38.49	\$38.49	\$38.49	\$38.49
0	Manufacturing (\$/stack)	\$14.01	\$3.27	\$3.17	\$3.15	\$3.08
201	Tooling (\$/stack)	\$22.21	\$22.56	\$22.49	\$22.59	\$22.50
N	Total Cost (\$/stack)	\$74.72	\$64.33	\$64.15	\$64.22	\$64.07
	Total Cost (\$/kW _{gross})	\$3.41	\$2.94	\$2.93	\$2.93	\$2.93
	Material (\$/stack)	\$38.27	\$38.27	\$38.27	\$38.27	\$38.27
2	Manufacturing (\$/stack)	\$14.00	\$3.27	\$3.17	\$3.14	\$3.08
201	Tooling (\$/stack)	\$22.17	\$22.52	\$22.45	\$22.54	\$22.45
2	Total Cost (\$/stack)	\$74.44	\$64.06	\$63.89	\$63.96	\$63.81
	Total Cost (\$/kW _{gross})	\$3.42	\$2.94	\$2.93	\$2.94	\$2.93

Indexed Hot-Pressing of MEA

- Large heated press with 90 second index time
- Very low cost hot-pressing
- Process parameters (90 seconds at 160°C)

based on US Pat. 5,187,025 to Analytic Power Corp.

Hot-Pressing Station

Large, Flat Surface, 1.5m wide,

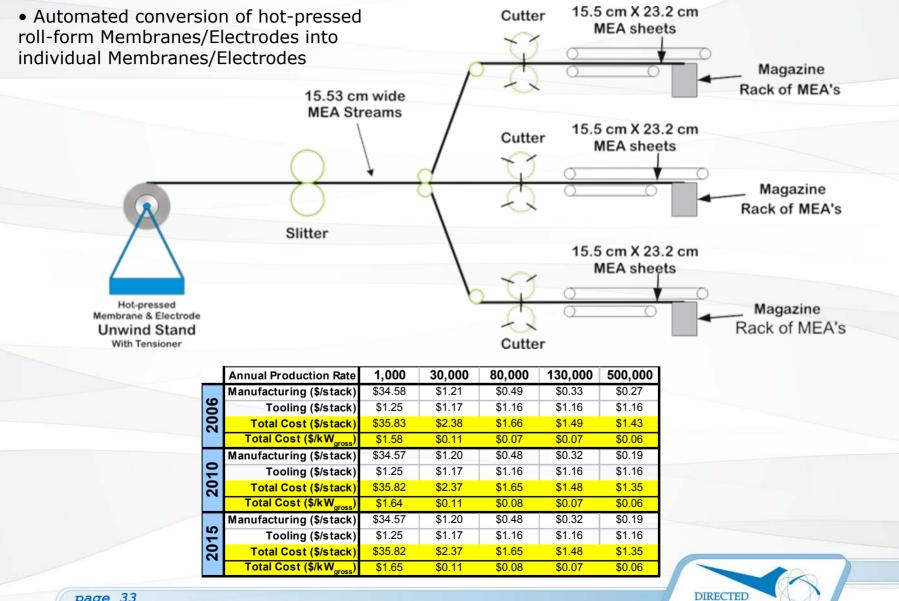
1.5m length, 160 °C,

90 second clamp time

Hot-Pressed M & E Rewind Stand With Tensioner 0.6m ID spool, 50 cm width

Membrane Unwind Stand With Brake & Tensioner 0.6m ID spool, 50 cm width

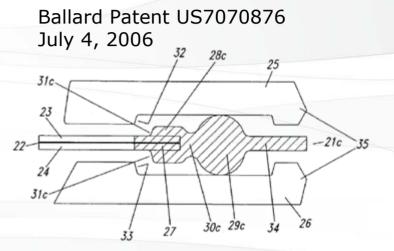
GDL Unwind Stand With Brake & Tensioner 0.6m ID spool, 50 cm width


page 32

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
	Manufacturing (\$/stack)	\$28.08	\$6.51	\$6.40	\$6.57	\$6.39
06	Tooling (\$/stack)	\$0.36	\$0.06	\$0.06	\$0.06	\$0.06
200	Total Cost (\$/stack)	\$28.44	\$6.57	\$6.46	\$6.63	\$6.44
2	Total Cost (\$/kW _{gross})	\$1.26	\$0.29	\$0.29	\$0.29	\$0.28
	Manufacturing (\$/stack)	\$27.68	\$5.24	\$5.35	\$5.38	\$5.26
10	Tooling (\$/stack)	\$0.36	\$0.05	\$0.05	\$0.05	\$0.05
2010	Total Cost (\$/stack)	\$28.04	\$5.29	\$5.40	\$5.43	\$5.31
••	Total Cost (\$/kW _{gross})	\$1.28	\$0.24	\$0.25	\$0.25	\$0.24
	Manufacturing (\$/stack)	\$27.68	\$5.24	\$5.35	\$5.38	\$5.26
15	Tooling (\$/stack)	\$0.36	\$0.05	\$0.05	\$0.05	\$0.05
201	Total Cost (\$/stack)	\$28.03	\$5.29	\$5.40	\$5.43	\$5.31
	Total Cost (\$/kW _{gross})	\$1.29	\$0.24	\$0.25	\$0.25	\$0.24

GDL Unwind Stand With Brake & Tensioner 0.6m ID spool, 50 cm width

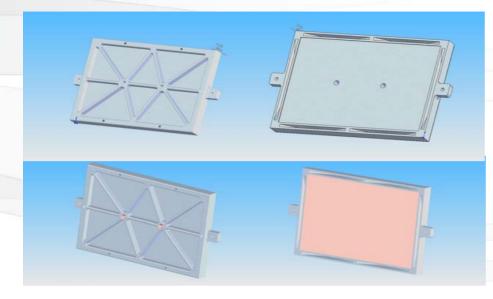
Cutting MEA to Size


TECHNOLOGIES

MEA Frame-Gasket Concept

- Insertion molding of gasket around MEA
- Process:
 - two-part silicone mix
 - vacuum mixer to remove air bubbles
 - low pressure injection followed by 20 ksi compression
 - 2.5 min cycle time at 130°C
 - room temperature cure outside of mold
- Silicone may have compression set problems: EPDM is an alternative
- \$14.3/kg (in barrel quantities)

1	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
	Material (\$/stack)	\$15.64	\$15.64	\$15.64	\$15.64	\$15.64
9	Manufacturing (\$/stack)	\$67.03	\$28.28	\$27.61	\$27.46	\$27.32
200	Tooling (\$/stack)	\$1.48	\$1.18	\$1.14	\$1.13	\$1.12
Ñ	Total Cost (\$/stack)	\$68.51	\$45.09	\$44.39	\$44.22	\$44.08
	Total Cost (\$/kW _{gross})	\$3.03	\$1.99	\$1.96	\$1.95	\$1.95
	Material (\$/stack)	\$9.18	\$9.18	\$9.18	\$9.18	\$9.18
0	Manufacturing (\$/stack)	\$59.86	\$27.81	\$27.14	\$26.99	\$26.85
201	Tooling (\$/stack)	\$2.94	\$1.18	\$1.14	\$1.13	\$1.12
Ñ	Total Cost (\$/stack)	\$71.99	\$38.17	\$37.47	\$37.30	\$37.16
	Total Cost (\$/kW _{gross})	\$3.29	\$1.74	\$1.71	\$1.70	\$1.70
	Material (\$/stack)	\$9.11	\$9.11	\$9.11	\$9.11	\$9.11
2	Manufacturing (\$/stack)	\$59.85	\$27.80	\$27.13	\$26.98	\$26.84
201	Tooling (\$/stack)	\$2.94	\$1.18	\$1.14	\$1.13	\$1.12
0	Total Cost (\$/stack)	\$71.90	\$38.09	\$37.38	\$37.22	\$37.07
	Total Cost (\$/kW _{gross})	\$3.30	\$1.75	\$1.72	\$1.71	\$1.70


MEA with Integrated Seal

Endplates & Current Collectors

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
	Material (\$/stack)	\$40.36	\$35.70	\$32.93	\$30.47	\$25.85
9	Manufacturing (\$/stack)	\$13.55	\$1.38	\$0.63	\$0.37	\$0.12
00	Tooling (\$/stack)	\$0.75	\$0.07	\$0.06	\$0.07	\$0.06
0	Total Cost (\$/stack)	\$54.66	\$37.15	\$33.62	\$30.91	\$26.04
	Total Cost (\$/kW _{gross})	\$2.41	\$1.64	\$1.48	\$1.37	\$1.15
	Material (\$/stack)	\$28.50	\$25.21	\$23.26	\$21.52	\$18.25
0	Manufacturing (\$/stack)	\$11.05	\$0.76	\$0.31	\$0.22	\$0.14
01	Tooling (\$/stack)	\$0.75	\$0.11	\$0.08	\$0.07	\$0.07
20	Total Cost (\$/stack)	\$40.30	\$26.07	\$23.65	\$21.81	\$18.46
	Total Cost (\$/kW _{gross})	\$1.84	\$1.19	\$1.08	\$1.00	\$0.84
	Material (\$/stack)	\$28.48	\$25.19	\$23.24	\$21.50	\$18.23
2	Manufacturing (\$/stack)	\$11.02	\$0.76	\$0.31	\$0.22	\$0.14
01	Tooling (\$/stack)	\$0.75	\$0.11	\$0.08	\$0.07	\$0.07
20	Total Cost (\$/stack)	\$40.25	\$26.05	\$23.63	\$21.79	\$18.44
	Total Cost (\$/kW _{gross})	\$1.85	\$1.20	\$1.09	\$1.00	\$0.85

- Concept based on UTC Fuel Cells US Patent 6,764,786
- Compression molded non-conductive composite (Lytex 9063 glass fiber reinforced epoxy resin)
- Eliminates need for electrical insulators
- Provides thermal insulation

• Copper Current Collector plates are press fit into endplates with copper studs protruding through endplates for current extraction

- 5 minute cycle/cure time
- \$11-\$18/kg Lytex material cost (depending on quantity purchased)

Stack Conditioning

	Step	Gas on Anode	Gas on Cathode	Primary Load Switch	DC Power Supply Positive Terminal	Electrode Potential	Current Density
	1	4% H2-N2	N2	Open	Connected to Cathode	Cathode 0.04V to 1.04V	Low
	2	4% H2-N2	N2	Open	Connected to Cathode	Cathode 0.04V to 1.04V	Low
	3		I	Repeat Step #	⁴ 1		Low
Cathada E'llina Casha	4		I	Repeat Step #	2		Low
Cathode Filling Cycles	5		I	Repeat Step #	⁴ 1		Low
	6		I	Repeat Step #	2		Low
	7	N2	4% H2-N2	Open	Connected to Anode	Anode 0.04V to 1.04V	Low
	8	N2	4% H2-N2	Open	Connected to Anode	Anode 0.04V to 1.04V	Low
Anode Filling Cycles	9		I	Repeat Step #	¹ 7		Low
	10		I	Repeat Step #	8		Low
	11		I	Repeat Step #	:7		Low
	12	Repeat Step #8					Low
Performance Calibrations	13	H2	Air	Closed	Not Connected	Depending on current density	0-1600mA/cm2
	14			Repeat step #	#13 up to 10 ti	mes	

- Stacks "conditioned" for enhanced performance
- Based on UTC Fuel Cells Patent 7,078,118
- Stacks condition per "Applied Voltage Embodiment"
- 10 stacks conditioned simultaneously
- Load bank ~\$100k
- Conditioning of stacks staggered to limit peak testing load to ~50kW
- Stacks conditioned to achieve 95% of max performance (~5 hrs; max performance requires ~13 hrs)

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
6	Conditioning/Testing (\$/stack)	\$18.84	\$12.37	\$12.20	\$12.24	\$12.18
00	Total Cost (\$/stack)		\$12.37	\$12.20	\$12.24	\$12.18
2	Total Cost (\$/kW _{gross})	\$0.83	\$0.55	\$0.54	\$0.54	\$0.54
0	Conditioning/Testing (\$/stack)	\$17.12	\$9.97	\$9.84	\$9.81	\$9.74
01	Total Cost (\$/stack)	\$17.12	\$9.97	\$9.84	\$9.81	\$9.74
7	Total Cost (\$/kW _{gross})	\$0.78	\$0.46	\$0.45	\$0.45	\$0.44
5	Conditioning/Testing (\$/stack)	\$15.39	\$7.56	\$7.35	\$7.38	\$7.32
01	Total Cost (\$/stack)	\$15.39	\$7.56	\$7.35	\$7.38	\$7.32
2	Total Cost (\$/kW _{gross})	\$0.71	\$0.35	\$0.34	\$0.34	\$0.34

System Assembly

	Number of Components	Component Placement Time (seconds)	Component Fixation Time (seconds)	Component Totals (minutes)
Major Components (Stac	:k,			
motors, pumps, vessels, Minor Components (inst		45	60	33.3
devices, etc.) Piping	22	30	45	27.5
2	# of pipe segments	5		
	bends per segment	2		
	time per bend	0		
	pipe placement time	30		
	# welds per pipe	2		
	weld time	90		
	# threaded ends per pipe	0		
	threading time	0		
				17.5
Hoses	21	30	105	47.3
Wiring (manual)	23	41.8	66.7	41.6
System Basic Functiona	lity Test			10.0
Total System Assembly	Time			177.1

Detailed DFMA not conducted

• Bill of Materials (BOM) components divided into 5 main categories and a notional installation time was attributed to each.

• Full Manual Assembly for 1k/yr manufacturing rate.

•10 station assembly line used for all other rates

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000
2006	Assembly (\$/system)	\$187.09	\$149.67	\$149.67	\$149.67	\$149.67
20	Total Cost (\$/kW _{net})	\$2.34	\$1.87	\$1.87	\$1.87	\$1.87
2010	Assembly (\$/system)	\$187.09	\$149.67	\$149.67	\$149.67	\$149.67
20	Total Cost (\$/kW _{net})	\$2.34	\$1.87	\$1.87	\$1.87	\$1.87
15	Assembly (\$/system)		\$149.67	\$149.67	\$149.67	\$149.67
201	Total Cost (\$/kW _{net})	\$2.34	\$1.87	\$1.87	\$1.87	\$1.87

Noteworthy BOP Components

	Current/2006	2010	2015	
Air Compression	Twin Lobe Compr./Exp./ Motor	Centrifugal Compr./Exp./ Motor	Centrifugal Compressor	
	\$2700-\$750	\$2000-\$720	\$1500-\$520	
Humidification	Water Spray Humid & Water Recov. System	Membrane Humidifier	None Required	
	\$934-\$720	\$900-\$250	\$0	
H ₂ Sensors	Two sensors needed \$2000-\$200	One sensor needed \$1000-\$150	No sensors needed \$0	

Components within the BOP Subsystems

Coolant Loop (High Temp Loop & Low Temp Loop)

- •HTL: Coolant reservoir
- •HTL: Coolant pump
- •HTL: Coolant DI Filter
- •HTL: Thermostat & Valve
- •HTL: Radiator fan
- •HTL: Radiator heat exchanger
- •LTL: Coolant Pump
- •LTL: Radiator
- •LTL: Radiator Fan

System Controller/Sensors

- Controller
- Hydrogen Sensor System

Fuel Loop

- •Hydrogen tank (not included in cost analysis)
- •Hydrogen pressure relief device & regulator (not included in cost analysis)
- •Hydrogen fueling receptacle (not included in cost analysis)
- Pressure Transducer
- •Hydrogen proportional valve
- Hydrogen Low Flow Ejector
- •Hydrogen High Flow Ejector
- Hydrogen/stack inlet manifold
- •Hydrogen/stack outlet manifold

Air Loop

- •Air filter & Housing
- •Air compressor, expander & motor
- Air/stack inlet manifold
- •Air/stack outlet manifold
- Air Mass Flow Sensor

Humidifier & Water Recovery Loop

- •High Pressure Water pump & motor
- •Air Humidifier Assembly
- •Air Humidifier Thermocouple
- •Exh. Air Condenser Water Level Sensor
- •Exh. Air Condenser Sump Pump
- •Water Reservoir
- •Humidifier Loop Deionizer
- •Membrane Air Humidifier
- •Air Demister
- •Exhaust Air Condenser

Miscellaneous/BOP

- Wiring
- •Startup Battery
- •Air ducting
- Water tubing
- Coolant liquid piping
- •Hydrogen piping/ducting materials
- •Fasteners for wire, hose, pipe
- Anode ducting
- Cathode ducting

Stack Bill of Materials (Current Technology)

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000	
	Flow Plates (Stamping)	\$97.42	\$86.39	\$86.20	\$86.39	\$86.32	
	MEAs						
	GDLs	\$973.05	\$518.36	\$298.81	\$224.27	\$101.76	
	Catalyst Ink	\$1,483.33	\$1,018.89	\$966.68	\$947.45	\$909.97	
	Membrane & Catalyzation	\$1,383.90	\$315.99	\$198.91	\$160.12	\$91.96	
	M & E Hot Pressing	\$28.44	\$6.57	\$6.46	\$6.63	\$6.44	
	M & E Cutting & Slitting	\$35.83	\$2.38	\$1.66	\$1.49	\$1.43	
6	MEA Frame/Gaskets	\$68.51	\$45.09	\$44.39	\$44.22	\$44.08	
2006	Coolant Gaskets	\$56.56	\$35.32	\$35.32	\$34.97	\$34.95	
20	Endplates & Current Collectors	\$54.66	\$37.15	\$33.62	\$30.91	\$26.04	
	Compression Bands	\$10.00	\$8.00	\$6.00	\$5.50	\$5.00	
	Stack Assembly	\$42.68	\$17.20	\$14.50	\$14.59	\$14.55	
	Stack Conditioning & Testing	\$18.84	\$12.37	\$12.20	\$12.24	\$12.18	
	Total Stack Cost	\$4,253.22	\$2,103.72	\$1,704.74	\$1,568.79	\$1,334.69	
	Total Cost for all 4 Stacks	\$17,012.86	\$8,414.87	\$6,818.96	\$6,275.14	\$5,338.75	
	Total Stack \$/kW (Net)	\$212.66	\$105.19	\$85.24	\$78.44	\$66.73	
	Total Stack \$/kW (Gross)	\$187.85	\$92.91	\$75.29	\$69.29	\$58.95	

• 3 to 1 stack cost reduction between low and high manufacturing rates

Stack Bill of Materials (2010 Technology)

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000	
	Flow Plates (Stamping)	\$74.72	\$64.33	\$64.15	\$64.22	\$64.07	
	MEAs						
	GDLs	\$716.51	\$352.20	\$205.31	\$154.31	\$71.43	
	Catalyst Ink	\$452.26	\$308.93	\$293.04	\$287.20	\$275.82	
	Membrane & Catalyzation	\$977.97	\$245.82	\$152.57	\$121.03	\$68.36	
	M & E Hot Pressing	\$28.04	\$5.29	\$5.40	\$5.43	\$5.31	
	M & E Cutting & Slitting	\$35.82	\$2.37	\$1.65	\$1.48	\$1.35	
(MEA Frame/Gaskets	\$71.99	\$38.17	\$37.47	\$37.30	\$37.16	
10	Coolant Gaskets	\$60.60	\$28.27	\$28.27	\$27.92	\$27.90	
201	Endplates & Current Collectors	\$40.30	\$26.07	\$23.65	\$21.81	\$18.46	
	Compression Bands	\$10.00	\$8.00	\$6.00	\$5.50	\$5.00	
	Stack Assembly	\$42.68	\$17.20	\$14.50	\$14.59	\$14.55	
	Stack Conditioning & Testing	\$17.12	\$9.97	\$9.84	\$9.81	\$9.74	
	Total Stack Cost	\$2,528.00	\$1,106.62	\$841.86	\$750.61	\$599.15	
	Total Cost for all 4 Stacks	\$10,111.99	\$4,426.47	\$3,367.43	\$3,002.43	\$2,396.62	
	Total Stack \$/kW (Net)	\$126.40	\$55.33	\$42.09	\$37.53	\$29.96	
	Total Stack \$/kW (Gross)	\$115.45	\$50.54	\$38.45	\$34.28	\$27.36	

~50% stack cost reduction between 2006 and 2010 due primarily to:

- 40% increase in power density (700mW/cm² to 1000mW/cm²)
- 55% reduction in catalyst loading (0.65 mg/cm² to 0.29 mg/cm²)

Stack Bill of Materials (2015 Technology)

	Annual Production Rate	1,000	30,000	80,000	130,000	500,000	
	Flow Plates (Stamping)	\$74.44	\$64.06	\$63.89	\$63.96	\$63.81	
	MEAs						
	GDLs	\$713.64	\$350.40	\$204.28	\$153.55	\$71.10	
	Catalyst Ink	\$295.94	\$201.29	\$190.92	\$187.10	\$179.68	
	Membrane & Catalyzation	\$973.06	\$244.93	\$151.98	\$120.56	\$68.07	
	M & E Hot Pressing	\$28.03	\$5.29	\$5.40	\$5.43	\$5.31	
	M & E Cutting & Slitting	\$35.82	\$2.37	\$1.65	\$1.48	\$1.35	
ß	MEA Frame/Gaskets	\$71.90	\$38.09	\$37.38	\$37.22	\$37.07	
	Coolant Gaskets	\$60.52	\$28.19	\$28.19	\$27.84	\$27.82	
201	Endplates & Current Collectors	\$40.25	\$26.05	\$23.63	\$21.79	\$18.44	
	Compression Bands	\$10.00	\$8.00	\$6.00	\$5.50	\$5.00	
	Stack Assembly	\$42.68	\$17.20	\$14.50	\$14.59	\$14.55	
	Stack Conditioning & Testing	\$15.39	\$7.56	\$7.35	\$7.38	\$7.32	
	Total Stack Cost	\$2,361.68	\$993.43	\$735.17	\$646.38	\$499.53	
	Total Cost for all 4 Stacks	\$9,446.70	\$3,973.70	\$2,940.68	\$2,585.53	\$1,998.11	
	Total Stack \$/kW (Net)	\$118.08	\$49.67	\$36.76	\$32.32	\$24.98	
	Total Stack \$/kW (Gross)	\$108.48	\$45.63	\$33.77	\$29.69	\$22.94	

 ~10% stack cost reduction between 2010 and 2015 due primarily to 35% reduction in catalyst loading (0.29 mg/cm² to 0.19 mg/cm²)

