

2007 DOE Hydrogen Program Review Platinum Recycling Technology Development

Stephen Grot, Ber Lehr, Walther Grot, Ion Power, Inc May 18, 2007

This presentation does not contain any proprietary or confidential information

Project ID # FC29

Overview

Timeline

- Project start Aug 2003
- Project end Aug 2008
- Percent complete: 70%

Budget

- Total project \$3.31M
 DOE share: \$2.65 M
 - Contractor: \$0.66 M
- FY06: \$0.63 M
- FY07: \$0.56 M

ion Power. inc

Barriers

- Barriers addressed
 - B: Stack Materials and Manufacturing Costs
 - A: Durability
 - (vitality measurements of materials recovered from end-oflife components will identify failure modes)

Partners

 DuPont, Delaware State University, NIST, Ballard, BCS Technology, Plug Power, Drexel University

Objectives

- To assist the DOE to demonstrate a cost effective and environmentally friendly recovery and re-use technology for PGM containing materials used in fuel cell systems.
- Use new processes that can also separate and recover valuable ionomer materials
 - DOE 2010 targets for membrane costs indicate membrane has value equal to the PGM

Approach

- Use solvents to "dissolve" ionomer and physically separate catalyst from ionomer solution in 1-5 sq meter batch sizes.
- Make best attempt to re-manufacture catalyst coated membrane with recovered materials; although may not be commercially acceptable
- Will learn failure modes of MEA materials used in fuel cells; ionomer and catalyst
- Use analytical techniques to determine the differences between used and virgin materials
- Determine the limits of separation technologies
- Economic analysis at pilot scale equipment will be used to determine feasibility of approach.
- Value of recovered NAFION® will likely be found in different application other than fuel cells; e.g. acid catalysis for organic synthesis.

Technical Accomplishments/

- Scaled up a new proprietary method that can effectively remove foreign cations from the recovered ionomer.
- Scaled up process and offered a 10 gallon 10% solution to DuPont for re-casting into re-manufactured membrane
- Designed and purchased 4000 psi 50 gallon scaled up reactor, install scheduled May 07.
- Purchased and installed and demonstrated scale up equipment:
 - Continuous centrifuge
 - 40 gallon mixing/separation tank
 - "Tower of Purity" for ionomer enrichment/solvent recovery process
 - Used multiple small reactor batches to gather enough material

Technical Accomplishments Previously discussed

 End-of-life NAFION® once cleaned up has properties similar to fresh NAFION®

- Catalyst vitality tests in the presence of small amounts of NAFION® is working at Del State University Subcontractor
- Separation Techniques at small scale are working

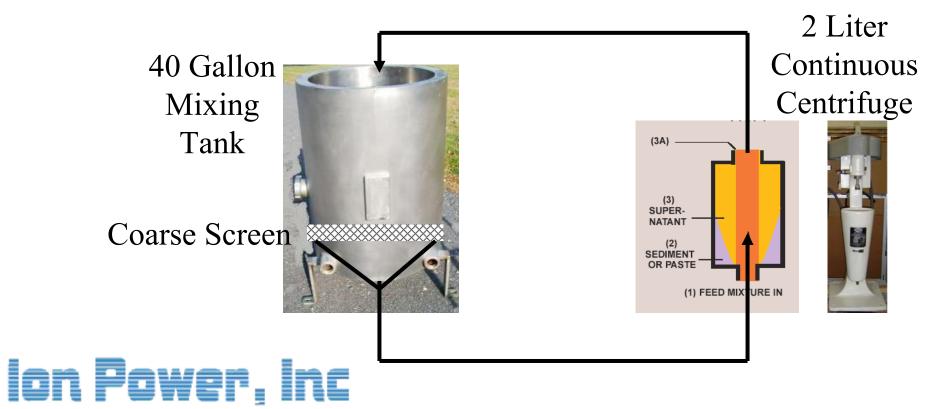
Scale-up of Autoclave

Process Energy Analysis Worst Case Scenario

Reactor size: 300 Liters 1550 kg metal mass Charge with 145 kg solvent, 30 kg MEAs (with GDL, Typical Lot) Delta T: 250 C 60 kW-Hr required to heat Metal and contents Centrifuge:1 kW for 1 Hr (Estimated) Output: $54,500 / day \rightarrow$ Will reduce by 10x if DOE 2015 goals are met \rightarrow \$5,400 Pt: Typical of Today's MEAs at 0.8 mg Pt/cm2 total 2-3% of MEA weight (0.75 kg) = \$27,500 (\$1100/try oz) NAFION[®]: 30% of MEA weight (9 kg) = \$27,000 (\$300/sq meter) GDL: 65% of MEA Weight (20 kg) = No value Costs : Total: \$656/day Energy: \$0.10/kW-hr : \$6.10 Man-Power: Estimate 8 Man-hours : \$300 Solvents And Acids can be re-used; Estimate : \$100 cost Capital Equipment Costs : ~ \$500k; or \$250/day (if used each day)

Slide from 2006 Review

We purchased this reactor. Currently being modified at a local ASTM code Shop. Will be inspected by State of Del. Div. Of Boiler Safety. Scheduled start-up May 07


Scale up of NAFION®/Catalyst Separation Process

Operation:

Load Reactor discharge into Mixing Tank

Keep circulation liquid until it exits tank clear

- → Catalyst in centrifuge
- → Clear NAFION[®] solution drained for recovery

Scale up Example

100 MEAs representing 3 sq meters at 1.0 mg PGM/cm²

Gas Diffusion media removed separately and analyzed for PGM

			Expressed as PGM	
Processing Step	Total material Tot	al PGM Collected	Loading on MEA	%
Acid & DI water wash :	======================================	======================================	======================================	======== 5.5%
Centrifuge top Discharge:		0.6 grams PGM,	0.02 mg PGM/cm ²	2%
Centrifuge bowl solids :	108 grams powder	27 grams PGM,	0.90 mg PGM/cm ²	88.2%
Centrifuge Bowl Liquids :	1.045 kg black liquid	0.75 grams PGM	0.025 mg PGM/cm ²	2.3%
Diffusion Media:	0.64 kg Carbon Paper	0.6 grams PGM	0.02 mg PGM/cm ²	2%
TOTAL:		30.6 grams PGM	1.075 mg PGM/cm ²	100%

Issues at Scale-up

- Does the separation equipment work?
- NAFION® solution is too dilute to be useful
- Screen gets plugged up with GDM fibers
- NAFION® solution is contaminated with Pt/C

Centrifuge Issues

- The centrifuge recovers 98% of the PGM fed to it
- The Catalyst can be scrapped as a solid cake from the centrifuge bowl
- The bowl capacity holds 5 sq meters worth of PGM, larger and/or continuous solids discharge centrifuges are available
- Centrifuge process time was 9 mins which is short compared to the reactor time of 4 hours
- NAFION® solution is contaminated with 2100 ppm of PGM. Will reduce feed rate and concentration to further reduce this.

Mixer Tank Issues

- NAFION® solution is too dilute
 - We need large volumes of liquid in order to get good mixing. E.g. 610 grams of MEAs requires 10 liters of liquid → 1% NAFION® solution
- We have developed a proprietary enrichment / solvent recycle system to solve this problem

Issues Converting recovered NAFION® to a film

- Good film casting is achieved only from alcohol based solutions; however alcohols in the presence of catalysts is problematic
- Water based recycling processing is preferred, makes low viscosity solutions
- Conversion from water based to good film with good mechanical still a challenge.
- Will work with team member DuPont to assist in conversion of recovered solution into a mechanically robust film.

Project Summary

 Recovery and separation work at scaleup is being demonstrated. Challenges are being discovered and overcome.

Future Work

- Remainder of FY 2007:
 - Demonstration of vitality of separated materials
 - Incorporate membrane manufactured by DuPont into MEAs and build into fuel cell stacks and operate for performance and lifetime.
- FY 2007-2008:
 - Operate process equipment on larger scale to get real numbers on process costs.
 - Develop a robust process that is not dependent on type of membranes recovered
 - Develop applications that can purchase recovered end-of-life polymer

