### Platinum Group Metal Recycling Technology Development

Lawrence Shore BASF Catalysts LLC

**FC30** 

May 18, 2007

The Chemical Company

This presentation does not contain any proprietary, confidential or otherwise restricted information

### **Overview**



### Timeline

Start - 11/2003

Finish - 10/2008

■85% Complete

### Budget

Total project funding

- DOE share = \$4.8MM
- Engelhard share = \$1.2MM
- \$743,000 received in FY06
- \$1.24 M budgeted for FY07

#### **Barriers**

- N (Cost)
- O (Stack Material and Manufacturing Cost)
- \$45/kw for transportation
- \$400-\$700kw for stationary
- **Current Partners**

Ceralink

#### Interactions/Collaborators

- W.L. Gore, 3M, Pemeas
- Cabot, ONR, NECC
- Milestone Scientific, Pall Scientific
- Hosakawa Micron

### **Objectives/ Timeline**



| Overall   | Develop and demonstrate a process for recycling of PEM fuel cell MEA's without HF emission                           |
|-----------|----------------------------------------------------------------------------------------------------------------------|
| 2003-2006 | Determine the processing steps necessary to optimize Pt recovery from aged fuel cell MEA's                           |
| 2005-2006 | Develop a solid-state adsorbent that will capture HF and COF <sub>2</sub> vapors (discontinued)                      |
| 2005-2006 | Evaluate the practicality of recovery of Nafion® polymer as part of a fuel cell recycling process (priority dropped) |
| 2006-2007 | Re-design process so that CCM and GDEs are processed together                                                        |
| 2007-2008 | Determine process economics and build a prototype                                                                    |

### **Plan and Approach**



#### Task 1: Pt recovery

- Compare acids used to dissolve Pt
- Compare conventional vs. microwave heating
- Task 2: Sample preparation
  - Balance MEA handling requirements with Pt yield

#### Task 3: HF remediation (Abandoned)

- Develop solid-state adsorber
- Modify process to minimize amount of adsorber required



### Task 4: Process integration

 Integrate unit operations based on results of Tasks 1-3

#### Task 5: Process Economics

- Estimate scale of pilot-sized plant
- Identify capital costs using process identified in Task 4

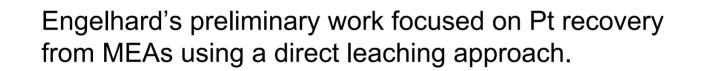
### Task 6: Process demonstration

Build recycling prototype

# Technical Accomplishments for the last year



Developed a simple, environmentally-benign, 'universal' process to recover Pt from fuel cell MEAs with the following features:


- ✓ No organic solvent required
- $\checkmark \qquad \text{No need for combustion}$
- ✓ Removal of GDL from membrane no longer necessary
- Applicable to both CCM and GDE architecture
- High Pt yield with base metal-alloyed cathode catalysts indicated

# Approach #1- Preliminary PM Recycling Process (No HF evolved)

Mix and

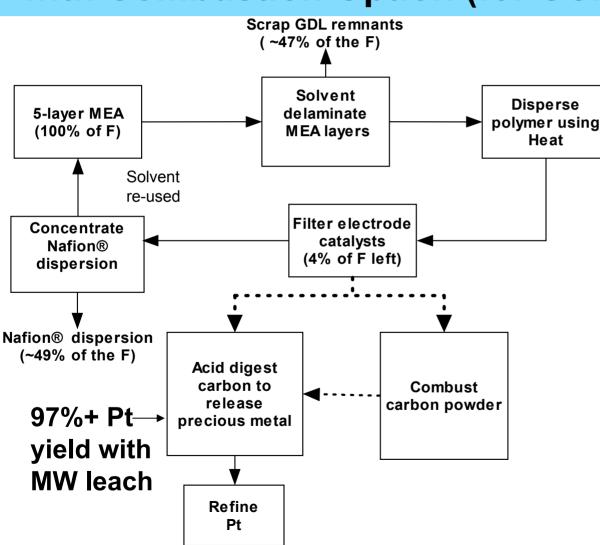
analyze

Refine



assisted

acid leaching


5-layer

**MEA** 

Nafion® recycling was not included in the process.

- Low Pt recovery achieved because of restricted access to the electrocatalyst surface during leaching.
- No provision for recovery of valued polymer.

### Approach #2 – Solvent Delamination/Acid Leaching with Combustion Option (for CCM)



1. Potential for Pt loss since mobilized nano-sized Pt particles formed by migration of Pt into the membrane can end up in UF retentate.

🗆 • BASF

The Chemical Company

2. Separation of electrode catalyst by delamination ineffective with GDE MEAs

3. Solvent usage introduces safety and environmental issues

4. Importance of Nafion® recovery is questionable because of market/material issues.

### Negative Aspects of MW Combustion of Delaminated Electrode Catalyst

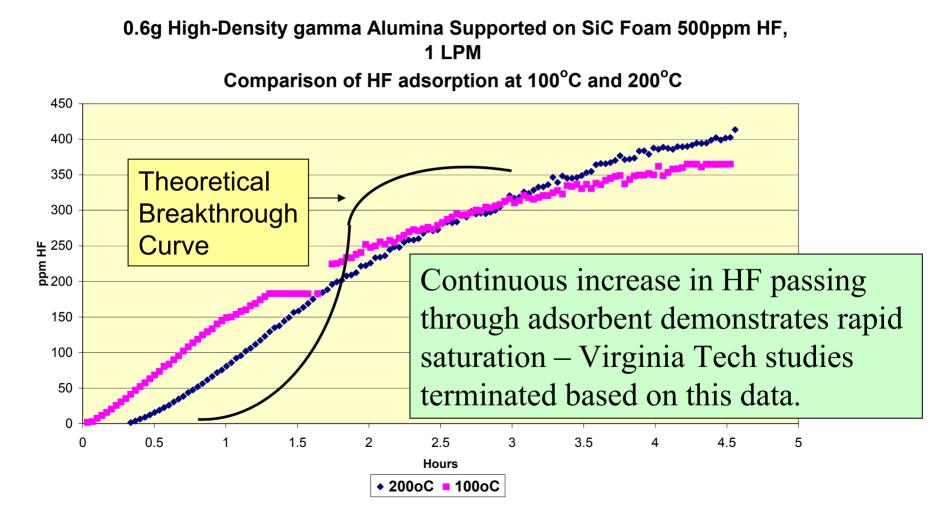


- Combustion of harvested electrode catalyst yields minimal HF
- Combustion of carbon-containing materials is desirable because the product is favorable for downstream operations:
  - Low moisture content aids in the assay
  - Processing material with carbon content is avoided
  - The feedstock for refining operations is concentrated

### However:

- Combusted catalyst powder sinters
  - Lower Pt yield compared to uncombusted material using Acid B
  - Controlled combustion at low temperature needed
- Significant loss of ruthenium observed compared to starting material (~75%) [stationary or DMFC fuel cells]

# CCM Recycling – Loss of Ru during combustion




- Results show that ¾ of the ruthenium was loss during combustion
  - Values based on assay of leach solution using acid A
    - Acid B volatilizes ruthenium

| Sample                                    | Pt/Ru ratio | Ru loss | Pt yield |
|-------------------------------------------|-------------|---------|----------|
| MW- Ashed (~1000°C) 3-layer<br>MEA        | 19.0        | 77%*    | 94%      |
| MW- Ashed harvested<br>electrode catalyst | 15.6        | 72%*    | 93%      |
| Uncombusted harvested electrode catalyst  | 4.4         |         | 97%      |

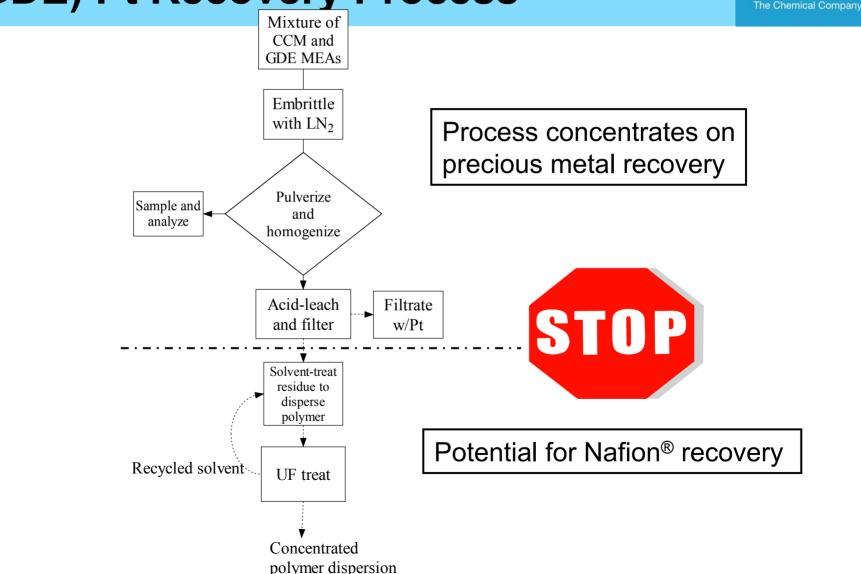
\* Ru loss based on comparison of Pt/Ru ratio of ashed to non-ashed sample.

### Rapid Breakthrough of HF Vapor From Simulated Combustion Observed Using Virginia Tech Adsorbent Conditions



🗖 = BASE

The Chemical Compar


# Identification of the Conflict in Recycling CCM and GDE MEAs



- Solvent delamination (Approach #2) liberates the electrode catalyst from both the GDL and membrane of a CCM, but is ineffective in releasing the electrode catalyst from the GDE.
- In the worst-case scenario, MEAs using both GDE and CCM design will:
  - acquire PEM fuel cell market share
  - and be indistinguishable to the recycler
  - and be mixed together when disassembled fuel cells are recycled.

This mixed lot of GDEs and CCMs cannot be efficiently recycled using processes tailored to MEA type.

### Approach #3 -Simplified/Consolidated (CCM and GDE) Pt Recovery Process



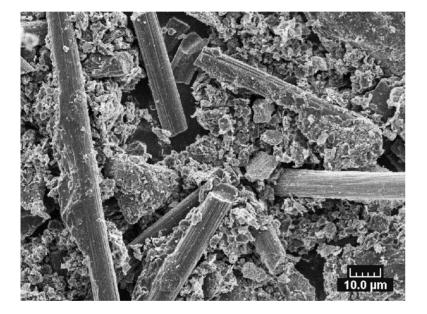
🗖 🛛 BASE

# Options for Recovering Pt from Fuel Cell MEAs



- Direct acid leaching of shredded MEAs (low yield Approach #1)
- Acid leach solvent delaminated catalyst powder w/wo ashing (Specific to CCM's) (Approach #2)
- Acid leaching of delaminated MEA (Specific to GDE's) (Approach #2a)
- Direct acid leaching of powdered MEAs, ground after cryogenic embrittlement (Approach #3)
  - ✓ Universal
  - No solvent required
  - Leaching will recover Pt that migrated into the membrane

# Only Cryo-Grinding Process (Approach #3) Yields High Pt Yield for both CCM and GDE MEAs


| Material | Acid<br>Leach<br>of 5-<br>layer<br>MEA | Acid<br>Leach of<br>Hand-<br>stripped<br>MEA        | Leach of<br>electrode<br>catalyst<br>(solvent-<br>delaminated) | Leach of<br>ashed<br>electrode<br>catalyst | MW Acid<br>leach of<br>solvent<br>Delamina-<br>ted GDE | MW<br>Leach of<br>Cryo-<br>ground<br>MEAs |
|----------|----------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------|-------------------------------------------|
| Approach | 1                                      | 1a                                                  | 2                                                              | 2                                          | 2a                                                     | 3                                         |
| ССМ      | 65, 82                                 | 98% on<br>membrane<br>(2-10% Pt<br>left on<br>GDL)  | 97.2 (MW)<br>90 (Conv.)                                        | 93, 99                                     |                                                        | 92                                        |
| GDE      |                                        | Catalyst<br>split<br>between<br>GDL and<br>membrane | NA                                                             | NA                                         | 93.8<br>(86%<br>w/conv.<br>leach)                      | 97                                        |

🗆 = BASE

The Chemical Company

# Demonstration of MEA Cryogrinding





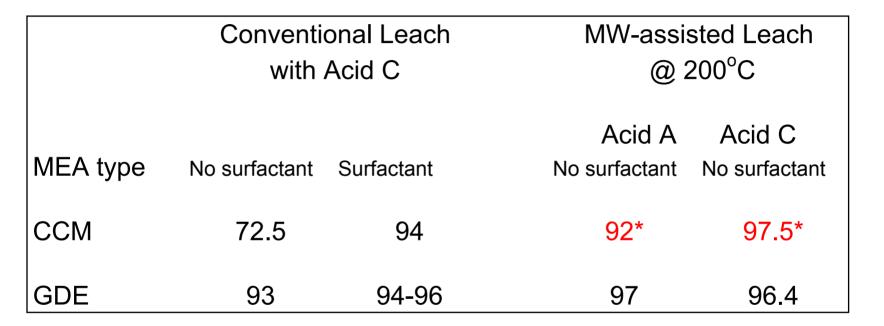
Ground CCM MEA, 1000x magnification

# outer layer 10µm Ymg = 9mm EHT = 5.00 KV Signal A = SE2 but er layer 10µm Ymg = 900X EHT = 5.00 KV Signal A = SE2

# Intact GDL from a CCM MEA, 500x magnification

## Comparison of Leaching Cryoground MEAs using the MW method

| MEA<br>type | Acid | 1 <sup>st</sup> leach yield | 2 <sup>nd</sup> leach yield | Total yield |
|-------------|------|-----------------------------|-----------------------------|-------------|
| ССМ         | А    | 92.0                        | 5.7                         | 97.7        |
|             | С    | 97.5                        | 1.6                         | 99.1        |
| GDE         | А    | 97.4                        | 2.1                         | 99.5        |
|             | С    | 96.4                        | 2.2                         | 98.6        |


The Chemical Company

# Advantages and Challenges of Cryogrinding MEAs



- Environmentally friendly No HF released, no solvent used
- Practical Both CCM and GDE-style MEAs are processed equally
- Efficient Delamination (manual or solvent assisted) not required to expose catalyst particles to leach medium
- Accurate Lot homogenization achievable through grinding and standard sampling procedures. TGA shows material has very low moisture content
- Clean Reduced handling while obtaining high Pt yield low potential for dust loss
- Economic Process concentrates on Pt recovery Polymer recovery is possible downstream, if justified
- Hydrophobic Poor wetting of PTFE and graphite needs to be overcome to achieve high yield during leaching

# Comparison of Leaching Methods for Cryo-ground MEAs- 1<sup>st</sup> yield



BASE

The Chemical Co

\*Relatively high MW yield achieved but vessel damaged because of carbon adsorbed on walls, overheating the vessel.

CCM more hydrophobic than GDE so wetting sample is a problem. Continuous-flow microwave reactor may be more efficient than autoclave.

# **Comparison of Pt yields for** developmental electrode catalysts

•Experiments performed using either conventional or MW-assisted leaching.

The Chemical Compan

•Sample presented as undispersed electrode catalyst powder (not on MEA.)

| Acid               |                                | Pt-TaPO | Pt/Fe | Pt/Co | Pt/Cr | Pt/Ru<br>(ref.) |
|--------------------|--------------------------------|---------|-------|-------|-------|-----------------|
| A<br>(MW leach)    | 1 <sup>st</sup> leach<br>yield | 95%     | 90%   | 89%   | 94%   |                 |
|                    | S.D                            | 1.3%    | 2.6%  | 3.0%  | 0.5%  |                 |
|                    |                                |         |       |       |       |                 |
| C<br>(Conv. leach) | 1 <sup>st</sup> leach<br>yield |         | 95%   | 97%   | 97%   | 78%             |
|                    | S.D                            |         | 2.0%  | 0.1%  | 0.9%  | 0.7%            |

### **Future Work - Milestones**



#### Unit operations

- Demonstrate scaled-up cryogenic grinding of MEAs 6/07
- Complete shakedown of scaled-up microwave digestion unit 7/07
- Validate the 'dewatering' of MEA slurry required for continuous leaching approach – 8/07
- Optimize the selection of surfactant for MEA wetting and the order of material addition - 8/07
- Determine best approach (batch, continuous, packed bed) for MEA leaching - 10/07

Process

- Estimate economics of consolidated process (w/ MEA grinding) 10/07
- Build prototype for leach scale-up with on-line QC capabilities –2/08

# Summary of Key Accomplishments during past year



- Recognized shortcomings inherent in first-generation processes and validated a generalized Pt recycling process, based on cryogrinding, that addresses DOE concerns regarding efficiency and environmental impact.
- Documented the increase in Pt leach yield using a surfactant and operating at elevated T and P.
- Demonstrated that the leach process was applicable to alloyed cathode catalysts.
- Cancelled the MEA combustion program at Virginia Tech because of sintering of Pt, loss of volatile Ru and the inability to sequester HF from the vapor phase.
- Produced an assay-quality (homogenous) sub-sample of MEA using a combination of cryo-grinding and blending.