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Overview

Barriers Addressed
• A. Durability
• B. Cost
• C. Electrode Performance

Funding
• Funding in FY06: $600 K
• Funding for FY07: $600 K
• Non-cost shared

Collaborators
• Brookhaven National Laboratory
• Case Western Reserve University 
• Oak Ridge National Laboratory

Time Line
• Start: FY 05
• Status: ongoing
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Objectives
• To assist the DOE Hydrogen, Fuel Cells & Infrastructure 

Technologies (HFCIT) Program in meeting cost, durability 
and performance targets by addressing issues directly 
associated with electrodes (electrode science not 
specifically called out in latest call).

http://www.hydrogen.energy.gov/
pdfs/review06/fcp_36_carlson.pdf

Pt is primary limitation 
on commercialization
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Approach

Model membrane-electrode delamination.  (complete)

Model hydrogen oxidation reaction (HOR) and ORR.

Investigate the effect of the platinum-iomomer
interface on ORR.

Model ORR using reactive adsorption mechanism.

Use micro-electrodes and interdigitated micro arrays 
to study ORR and peroxide generation.

Elucidating catalyst utilization and durability of 
electrodes.

2007

2006
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ORR using reactive intermediates

  j0T = 4FκT ; j0 H = 4Fκ H ; j0V = 4FκV ; jk = 2F(ν H + νV ) = 4F(ν H + νT )
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  j0T = 4FκT ; j0 H = 4Fκ H ; j0V = 4FκV ; jk = 2F (ν H + νV ) = 4F (ν H + νT )
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Comparisons of rate limiting 
step and isotherms suggest 
PtOH is dominant surface 
species.

Collaboration with 
Brookhaven National Lab.
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Micro-electrode studies
• We undertook micro-electrode studies to try to better understand the 

platinum-ionomer interface.

• The platinum-ionomer interface is much more complex/dynamic 
(temperature, humidity, ionomer) than is traditionally considered.
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• At 100% RH on smooth 
Pt surface, nearly all of 
the surface is 
accessible.

• Decreases in RH make 
significantly less of the 
surface available.

• Platinized (rough) 
surfaces show much 
lower available surface 
area, even at high RH.

•Pt reorganization/ 
mobility is key.

Pt Accessible Catalyst Surface Area
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Restructuring of Nafion at 
the interface with smooth Pt 
results in increased peroxide 
generation in reverse scan.

Little exists in literature 
quantifying in-situ peroxide 
generation for fuel cells.
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Electrode History

• ‘GE’ style electrode: Pt black steam-bonded to 
membrane with Teflon binder

• 1986: Raistrick (LANL): Impregnated catalyzed 
Prototech electrode (ELAT)

• 1990: Wilson (LANL): Intimately mixed 
ionomer/catalyst ink applied to membrane

• Mid 90’s – Present: Nanostructured electrodes (3M, 
carbon nanotubes)

Catalyst compositions often “empirically” 
optimized for best initial performance.  New 
studies (microscopy, microelectrodes) have 
allowed further insight into microstructure.

O2H2
Air

Cell X-Section

H2O
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Microscopy
• Electrochemical AFM of a Nafion surface 
shows large dead domains to proton 
conductivity (changes with RH qualitatively 
agree with our microelectrode studies).

HR-TEMs of LANL MEA courtesy of Karren More, ORNL

Pt

Pt

5 nm

Emil Roduner, University of Stuttgart, Advances in materials 
for proton exchange membrane fuel cell systems Asilomar, 
CA, February19 –22, 2007

•HR-TEMs have been able to show 
carbon, platinum, ionomer and pore 
space.  Appearance of polymer 
doesn’t guarantee ionic contact.
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Pt particles after 60°C cycling to 1.2 VFresh cathode Pt catalyst particles
20 nm

HR-TEMs courtesy of Karren More, ORNL

Ionic/Electronic Conductivity - Durability
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Electrode Questions

• How much of the catalyst is electronically or 
ionically isolated?

• How effectively is the catalyst that can be 
accessed being utilized?

• These factors impact performance and 
durability: What role does electrode 
design/processing play and can it be 
improved?

We ultimately care about performance per cost
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Catalyst Utilization

• Means different things to different people
– Fraction of surface area accessible electrochemically

– Use of accessible surface area

• Different measurements of surface area
– X-Ray Diffraction, heterogeneous surface area 

measurements, half cell electrochemical techniques, fuel 
cell MEAs

XRD
Pt-carbon (127 m2/g)
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H2S was found to be a good heterogeneous surface area probe.
CO had difficulty as a probe.  Gravimetry is also being explored.
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Electrochemical Surface Area Probe
• Cyclic Voltammetry (CV) used to determine 

electrochemically accessible surface area 
– Wet half cell studies
– MEA fuel cell studies

• H2 adsorption
• PtO reduction
• CO stripping 

– Loading 
– Scan rate (kinetics)
– Processing

E vs. Ag/AgCl (V)
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Surface Area Dependence - Processing

XRD
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H2 adsorption
•Here we present H2
adsorption surface areas, 
CO stripping shows 
similar trends but slightly 
increased surface areas, 
PtO reduction is more 
complex.

•Measured surface area 
decreases as processing 
increases.

• MEAs have up to 4x 
lower surface area than 
those obtained by other 
techniques, suggesting 
loadings could be 
significantly reduced with 
improved design.
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Future Work

• Kinetic Studies
– Discerning activity within accessible Pt (not all sites are 

equal), can accessible sites be made more active?

• Electrode Design/Processing Studies
– Differences in processing of electrodes

– Coupling performance and durability with structure

• Tool Development
– AFM (phase mode plus conductivity/reaction)

– Ionic/Electronic conductivity decoupling
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Project Summary

• Micro-electrodes studies have shown the importance of the Pt-
ionomer interface and ionomer reorganization on accessible 
catalyst surface area and peroxide generation.

• Roughened surfaces (perhaps more fuel cell like) have shown 
decreased ability of the ionomer to reorganize. 

• We have characterized platinum surface area as a function of 
processing and shown significant decreases in surface area 
with composition and steps.

• Significant reduction in loading (>4x) might be achievable 
with little impact on performance and durability if the 
platinum in the electrodes could be utilized more efficiently.
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