

Development of Low-cost, Durable Membrane and MEA for Stationary and Mobile Fuel Cell Applications 2007 Hydrogen Program Annual Review

Jung Yi, David Mountz, James Goldbach, Tao Zhang, Scott Gaboury and Michel Fouré Arkema, Inc. May 16, 2007

Project ID#: FC9

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Date: Oct. 2003
- End Date: June 2007 (with no-cost extension)

Budget

- Total Funding
 - DOE: \$5,771K
 - Partners: \$2,241K
- FY2006 Funding
 - \$2,205K
- FY2007 Funding
 - \$2,063K

Barriers

- B: Cost
 - \$20/m² (Membrane Target)
 - \$10/kW (MEA Target)
- A: Durability
 - 5000 hours (Target)

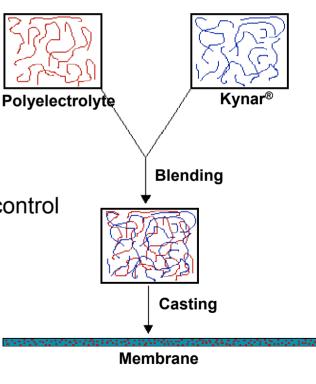
Partners

- Arkema:
 - Georgia Tech
- Johnson Matthey Fuel Cells
- UTC Fuel Cells
 - University of Hawaii

Objectives

Overall

 Develop low-cost and durable membrane and MEA that can meet DOE targets and help drive the commercial reality of fuel cells


• 2006-2007

- Development and characterization of new-generation membranes
 - Morphology
 - Transport Properties
 - Mechanical Properties
 - Chemical Stability
- MEA optimization
- Durability testing of the membrane in fuel cells

Arkema's Approach

- Polymer blend system to decouple H⁺ conductivity from other requirements
 - Kynar[®] PVDF
 - Engineering thermoplastic
 - High chemical resistance and electrochemical stability
 - Provide mechanical support
 - Polyelectrolyte
 - H⁺ conduction
 - Physical properties unimportant
- Robust blending process
 - Applicable for various polyelectrolytes
 - Capable of morphology and physical property control
- Lower cost approach compared to PFSA
 - Kynar[®] PVDF commercial product
 - Polyelectrolyte hydrocarbon based
- Feasibility demonstrated (M31)

Approach : Project Progress

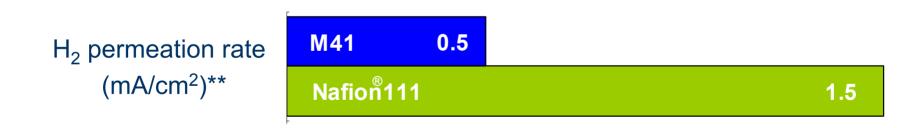
	Development of Polyelectrolytes	Formulation of Membranes	MEA & Fuel Cell Testing	Large Cell Validation
M31 generation	 Identified the requirements Down-selected a structure Synthesized sulfonated copolymer 	 Validated blending versatility Demonstrated comparable properties Characterized morpholog Developed high throughput methods Scaled up to pilot 	 MEA optimized Demonstrated comparable FC performance to PFSA High decay rate observed in long-term testing 	 Validation of BOL performance UEA fabrication UTC cell testing (400cm² active area)
M41 generation	 Elucidated M31 failure mechanisms Developed <i>ex-situ</i> PE screening method Synthesized new generatio chemically stable PE 	 Successful membrane formulation Property & morphology characterization Scale up to pilot 	 MEA fabrication Electrode optimization FC performance demonstration Accelerated durability tests OCV durability RH cycle durability V-cycle durability 	• MEA fabrication • UTC cell testing (400cm ² active area)

In Progress (Y06-Y07) Future Work

M41 Physical Properties

	Nafion [®] 111	M41
Dry Thickness (µm)	25	25
Equivalent Weight	1100	800
Density (g/cm ³)	1.8	1.5
Water Uptake (%)	37	60
X,Y Swell (%)	15	20
Thickness Swell (%)	14	10-15
Tensile Stress Break (MPa)	19	27
Elongation (%)	103	95
Tear Strength(lb _f /in)	404	934
Tear Propagation (lb _f)	0.004	0.018

• M41 shows equal/better mechanical properties than Nafion[®] 111

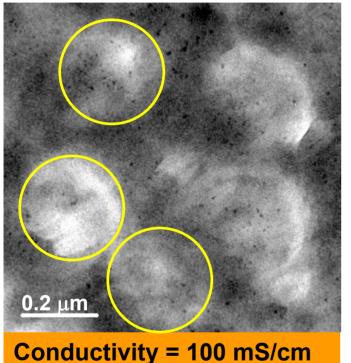


M41 Transport Properties

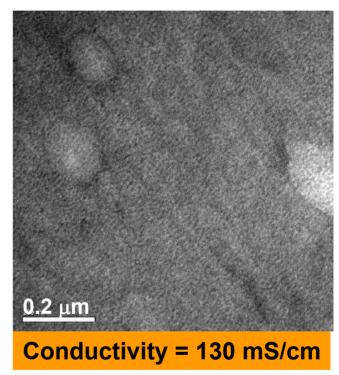
Equivalent proton conductivity compared to Nafion

Superior gas barrier property than Nafion membranes

by 4-point in-plane AC measurements in water at 70°C by electrochemical method at 80°C with 100% RH


*

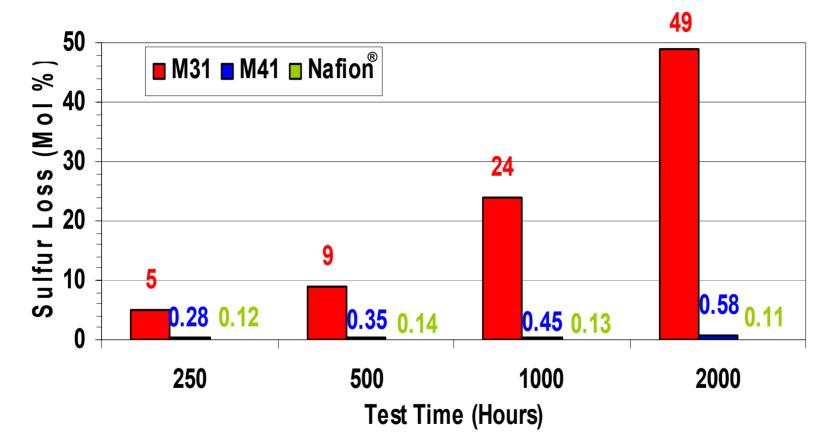
**



Morphology Characterization and Control

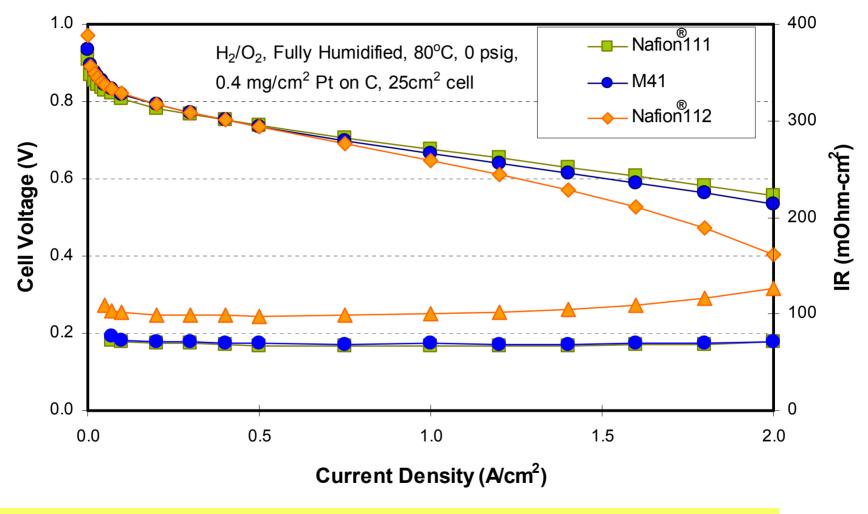
M41 (early development stage)

M41 (Pilot membrane)



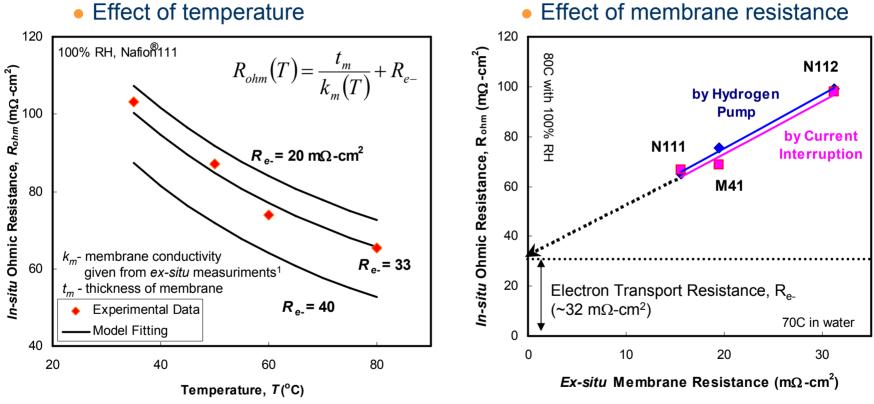
- Range of morphologies possible
- High-resolution TEM characterization (collaboration with ORNL) to gain understanding of structure and property

M41 Chemical Stability


• In-house developed *ex-situ* sulfur loss test

M41 shows less than 1% sulfur loss over 2000hr.

Fuel Cell Testing: BOL Performance

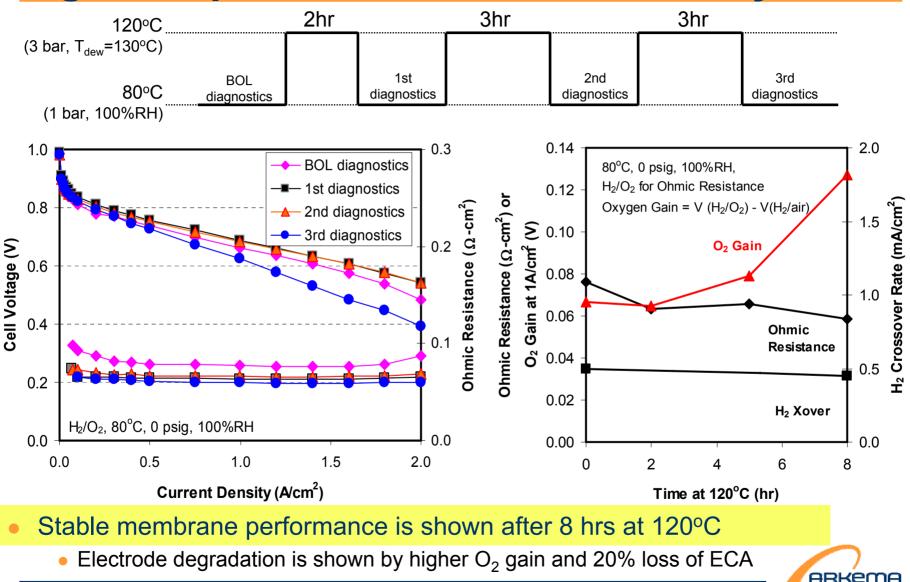


ARI

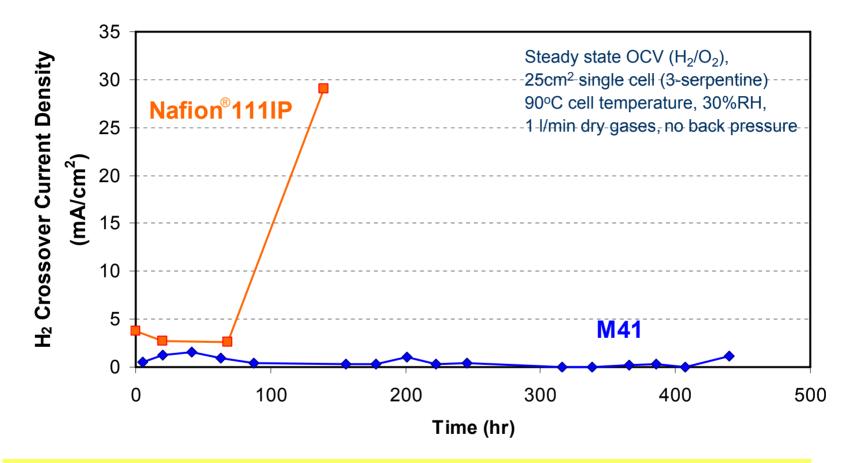
Comparable in-cell performance to Nafion[®] 111 demonstrated

Fuel Cell Performance Diagnostics

- Ohmic resistance (R_{ohm}) by : (1) hydrogen pump and (2) current interruption
- Decouple the proton resistance (R_{H+}) and the electron resistance (R_{e-}) by

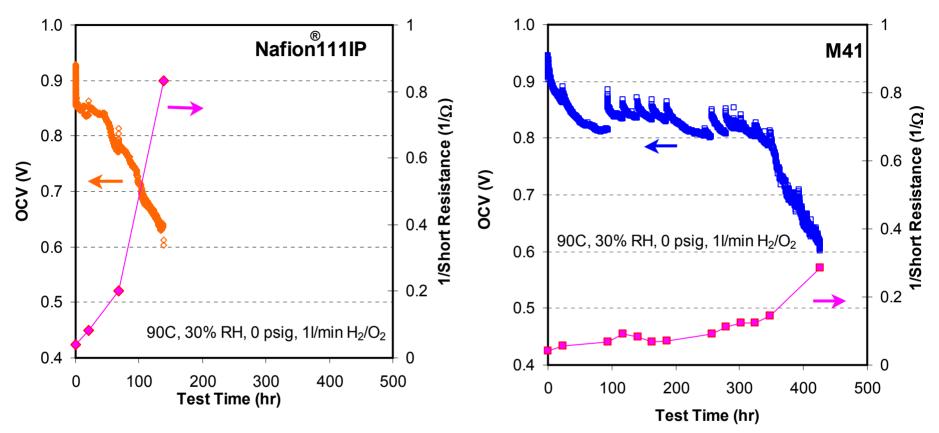


Effect of membrane resistance


Good interfacial contact between M41 and electrodes demonstrated

¹ S. Cleghorn, J. Kolde and W. Liu, "Catalyst coated composite membranes," *Handbook of Fuel Cells*, V3, p566, Wiley, 2003

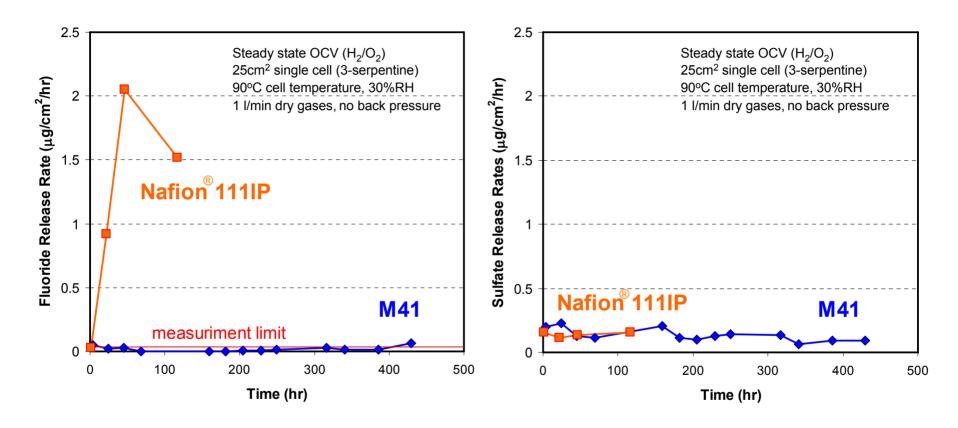
High Temperature Excursion Stability


OCV Durability: Hydrogen Crossover

- Nafion[®] 111IP membrane failed around 100 –150 hrs
- M41 membrane exhibits superior chemical stability in fuel cells

ARKem

OCV Durability: Effect of Electrical Short

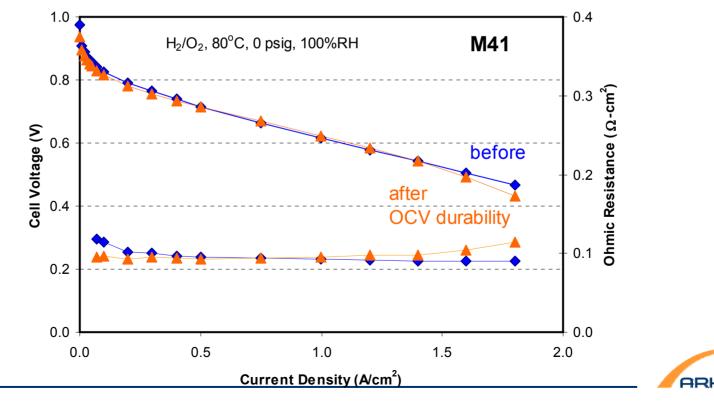


- Electrical short resistance is increased for both Nafion[®] 111IP and M41
- OCV is dictated by the shorting resistance for both membranes
 - Probably caused by the roughness of gas diffusion electrodes

ARKema

• M41 showed no changes in H₂ crossover current density

OCV Durability: Effluent Water Analysis



- M41 shows significantly lower F⁻ release rates
- M41 shows similar sulfate release rates to Nafion[®] 111IP

OCV Durability: Post-Mortem Analysis

- Nafion[®] 111IP failed due to chemical degradation leading to local pin-holes (no membrane thinning observed)
- M41 exhibited no sign of membrane failure due to chemical degradation after 400+hr OCV durability test
 - No change in gas crossover rates
- No change in proton transport resistance
- No change in membrane thickness
- Identical performance after OCV test

Future Work

- Complete accelerated in-cell durability tests (Arkema, JM)
 - Continue OCV durability test
 - RH cycle durability test is in progress
 - Voltage cycle durability test is in progress
- High-resolution morphology characterization for structure-property understanding (ORNL, Arkema)
- Complete large-size fuel cell testing
 - Prepare 400cm² MEAs (JM)
 - Testing in UTC Fuel Cell hardware (U of Hawaii and UTC Fuel Cells)
- Develop new-generation polyelectrolytes (new grant award)
 - Optimized for Low RH operation
 - Higher temperature stability (up to120°C)

Summary

- Arkema developed Kynar[®]/Polyelectrolyte blending technology and produced membranes suitable for fuel cells (low cost and durability)
 - Equivalent fuel cell performance to Nafion membranes
 - Better mechanical properties
 - Lower gas permeability
 - Pilot scale production
- The new generation membrane (M41) demonstrated superior membrane durability in *in-situ* OCV test
 - At least 4x increase in OCV durability versus Nafion[®] 111
 - No increase in gas crossover rate after 400+ hrs
 - Significantly lower F⁻ release rate compared to Nafion[®] 111
 - Humidity cycle and load cycle tests are underway
- Demonstrated morphology characterization and control capability
 - Further work is in progress to understand structure/property relationships

ARKem