

2007 DOE Hydrogen Program Review Next Generation Bipolar Plates for Automotive PEM Fuel Cells

Orest Adrianowycz, Ph.D. GrafTech International Ltd. May 16th, 2007

Enriching lives through innovation

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Project Timeline

- Start date: March 1st, 2007
- End date: February 29th, 2009
- Percent complete: <5%

Budget

- Total project: \$2.9 MM
 - DOE share: \$2.3 MM
 - Contractor share: \$0.6 MM
- Received in FY06: \$0.00
- Funding for FY07: \$200K

Barriers (bipolar plates)

- A Durability
 - Improved corrosion resistance
 - Decrease weight and volume
- B Cost
 - Lower material & production costs
 - Increased power density due to decreased thickness
- C Performance
 - Improve gas impermeability
 - Improved electrical and thermal conductivity

Collaborators

GrafTech International Ltd. Primary Contractor

- Orest L. Adrianowycz, Ph.D. Principle
 Investigator
- Expanded graphite selection
- Prepare and testing of intermediate polymer-graphite composites
- Final graphite/polymer composition selection
- Bipolar plate manufacturing

Ballard Power System

- Warren Williams, Team Leader
- Flow field plate design
- Fuel cell stack assembly
- Durability and freeze-start testing
- Post-test analysis of composite plates

GRAF*Tech*

ADVANCED ENERGY TECHNOLOGY INC. A GrafTech International Ltd. company

Huntsman Advanced Materials

- Roger Tietze, Team Leader
- Preliminary screening of high temperature resin formulations
- Mold release agents and flow additives for the resin formulations
- Scale-up of resin production for full-size plates manufacturing

CWRU

- Professor Tom Zawodzinski, Team Leader
- High temperature membrane materials
 and testing protocol selection
- High temperature single cell testing of resin-graphite composite flow field plates
- Post-test analysis of high temperature single cell effluent/

◀ 3 ▶

Program Objectives

Overall Project Objective

 Develop next-generation automotive bipolar plates based on an engineered composite of expanded graphite and resin capable of operation at 120 °C

Goals Year 1

- Develop graphite/polymer composite to meet 120°C fuel cell operating temperature
- Demonstrate manufacturing capability of new materials to a reduced bipolar plate thickness of 1.6 mm

Goals Year 2

- Manufacture high-temperature flow field plates for full scale testing
- Validate performance of new plates under automotive conditions using a short (>10-cell) stack
- Show viability of \$6/kW cost target through the use of low-cost materials amenable to high volume manufacturing

Approach

- Task 1: Graphite Material Selection
- Raw Material Evaluation
- Natural Graphite Selection
- Intercalation Chemistry and Processing optimization
- Task 2: Resin Screening, Testing and Selection
- Resin Evaluation
- Resin Selection
- Design Part Release Chemistry

Task 3: Small-Scale Composite Prep

- Develop Methods for Plate Manufacturing and Testing
- Evaluate Thermal and Mechanical Properties

Task 4: Machining and Embossment

- Machined Plates for Single Cell Testing
- Validate Properties of Composites
- Design, Fabricate, and Evaluate Small Embossed Test Plates

Approach (continued)

Task 5: Single Cell Testing

- Select High Temp Fuel Cell Components
- Develop Test Method for Analysis of Fuel Cell Leachates
- Perform 1000 hr Single Cell Testing
- Post Test Plate Analysis
- Task 6: Design and Manufacture of Full-size Bipolar Plates
- Design Flow Field Plate Molds
- Fabricate Full Size Embossing Die Set
- Emboss Full-size Bipolar Plates

Task 7: Short Stack Test of Full-size Plates

- Short stack plate assembly
- Test Cells in Short-Cell Stack
- Post-Test Analysis
- Deliver Full Size Plate Stack to DOE
- Task 8: Economic Assessment of New Technologies
- Perform economic assessment of the selected raw material and manufacturing processing

Program Milestones Tasks 1 through 4

ID	Task Name											
		arter Feb	Mar	2nd (Apr	Quarter May	Jun	3rd Qu Jul		Sep	4th Qua Oct		Dec
1	1 Expanded Graphite Material Selection				1							
2	1.1 Natural Graphite Selection			\sim								
9	1.1.7 Select Final Flake Sources		$\langle \rangle$	03/2	26							
11	1.2 Intercalation Chemistry and Exfoliation Methods								\sim			
12	1.2.1 Execute and Analyze Screening Experimental Design											
28	1.2.1.14 Identify and Finalize Key Processing Variables						0	7/16				
29	1.2.2 Execute and Analyze Response Surface Statistical Experiment								\sim			
41	1.2.2.12 Optimized Expanded Graphite Identified								\bigcirc	09/24		
42	2 Resin Identification and Selection				/							
49	2.7 Ten Resin Formulations Downselected				04/2	6						
50	3 Small-Scale Composite Preparation and Evaluation	_					1	\checkmark				
51	3.1 Design Experiment and Execute Screening DOE						<u> </u>	\sim				
58	3.1.7 Contingency Point Resin Reformulation						07					
61	3.1.10 Optimum Composite Compositions for Minimum Thickness Identified						0	7/16				
65	3.3 Evaluate Thermal and Mechanical Properties				\sim							
69	3.3.4 A Few Resin Candidates Downselected							07/3	51			
70	4 Machining and Embossment of Small-Scale Composites											-
71	4.1 Fabricate New Composite Materials								\sim	<u> </u>		
75	4.1.4 New Composites Ready for Embossed and Machined Plates									○ 1	0/22	
76	4.2 Machined Plates for Single Cell Testing										\sim	
80	4.2.4 Machined Plates Completed									_	11	1/1
83	4.4 Design, Fabricate, and Evaluate Small Embossed Test Plates									\sim		-
93	4.4.10 New Composites Embossability Characterized											

Program Milestones Task 5 through 9

ID	Task Name	arter		2nd	Quarter		3rd Q	uarter		4th Q	uartor		1st Qua	artor	
		Feb	Mar		May	Jun		Aug				Dec		Feb Ma	ar
94	5 Single Cell Testing		\sim												
99	5.5 Single Cell Test Completed	\bigcirc	02/14												
102	5.8 Primary Resin/Composite Candidate Downselected		03	3/04											
103	6 Design and Manufacture of Full-size Bipolar Plates														
113	6.3 Fabricate Full Size Embossing Die Set				\searrow										
119	6.3.6 Full Size Tool and Leak Check Device Ready							\leq	09/0	01					
120	6.4 Emboss Full-size Bipolar Plates									\sim					
130	6.4.10 Full Size Plates Ready for Short Stack Testing									□ 1	0/13				
131	7 Short Stack Test of Full-size Plates													\sim	
132	7.1 Part and Test Station Preparation									\sim		\searrow			
137	7.1.5 Short Stack Ready for Testing											12	2/09		
141	7.3 Post-Test Analysis of Parts and Performance													$\sim \sim$	
144	7.3.3 Final Review of Short Stack Test Results Completed													\sim -0)3/(
145	7.4 Deliver Full Size Plate Stack to DOE													\sim	
147	7.4.2 Plates Delivered to DOE													\diamond	03
148	8 Economic Assessment of New Technologies						4								
150	8.2 Complete Economic Assessment											<	12/30)	\neg
151	9 Team Meetings and Reports														
171	9.4 Final Report														
173	9.4.2 Final Report Complete														

◀ 8)

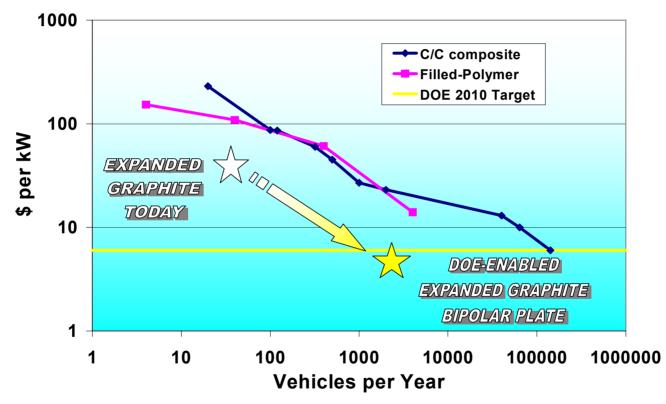
DOE Bipolar Plates Technical Targets (Table 3.4.14)

Characteristic	Units	2005 Status	2010	2015
Cost	\$/kW	10	5	3
Weight	kg/kW	0.36	<0.4	<0.4
H ₂ permeation flux	CCM ³ SEC ⁻¹ CCM ⁻² @ 80°C, 3 atm (= <0.1 mA/cm ²)	<2 x 10⁻ ⁶	<2 x 10⁻ ⁶	<2 x 10⁻ ⁶
Corrosion	μA/cm ²	<1	<1	<1
Electrical conductivity	S/cm	>600	>100	>100
Resistivity	Ohm-cm	<0.02	0.01	0.01
Flexural Strength	MPa	>34	>25	>25
Flexibility	% deflection at mid-span	1.5 to 3.5	3 to 5	3 to 5

Flow Field Plate Technologies Comparison

Technology	Advantages	Disadvantages
Graphite-filled	Known fabrication techniques	Thermal conductivity
polymers	Molded-in flow fields	Electrical conductivity
	Density	Temperature (thermoplastics)
		Brittleness
		Molding with high filler content
Carbon/carbon	Electrical conductivity	Unproven volume manufacturing
composites	Strength	Thermal conductivity
	Chemically inert	Thickness
	Density	
Metals	Electrical conductivity	Corrosion
	Strength	Contact resistance
	Temperature	Thermal conductivity
	Thin	Density
	Known fabrication techniques	Expensive alloys and coatings
Expanded graphite	Chemically inert	Permeability
	Electrical conductivity	Temperature
	Contact resistance	Strength
	Thermal conductivity	
	Thin	
	Cost	
	Proven performance	

Flow Field Plate Property Comparison


		Filled	Filled	Carbon /	Machined	Metal - 316	Resin Flexible
		Polymer	Polymer	Carbon	Graphite	Stainless	Graphite
				Composite		Steel	
Property	Units	BMC 900	SGL 900	Porvair	РОСО		GRAFCELL®
					AXD 5Q		Composite
Density	g/cm ³	1.82	1.84	1.25	1.78	8	1.6
Electrical	S/cm	100 (x,y)	56 (x,y)	>500	680	13500	1470 (x,y)
Conductivity		50 (z)	18 (z)				1-3 (z)
Thermal	W/m-K	NA (x,y)	14	35 (x,y)	95	16	200 (x,y)
Conductivity		18 (z)					~ 5 (z)
Thermal Expansion	1 x 10E-6	30	50	2	8	16	
Coefficient							27 (z)
Flexural Strength	MPa	40	35	41	86	460-860	
						(Tensile)	
Corrosion		No	No	No	No	Yes	No
Projected Cost		Medium	Medium	High	Very High	High	Low
NA - Not Available							
GRAFC ELL® is a registed	trademark of	Advanced Ene	rgy Technolog	y			

Bipolar Plate Cost Projection Comparisons

Estimated Bipolar Plate Cost

1. Graphite Filled Polymer Estimate: A. Mueller, et. al.; "Injection Molded BPP – A Big Step to Cost Reduction of PEMFC", 2004 Fuel Cell Seminar

 Carbon/Carbon Composite Estimate: D. Haack; "Scale-up of Carbon/Carbon Composite Bipolar Plates", Porvair Advanced Materials, Inc. final report to the DOE, May 2005, Contract Number: DE-FC04-02AL67627
 Resin Filled Expanded Graphite Composite Estimate: E. Carson, et. al.; "Cost Analysis of PEM Fuel Cell Systems for Transportation", Subcontract Report NREL/SR-560-39104, 2005

Accomplishments Task 1 – Graphite Selection

Graphite

- Primary domestic production flake (G-1)
- Alternative imported production flake (G-2)
- Purified domestic production flake (G-3)
- Purified imported flake (G-4)
- Alternative imported intercalated flake (G-5)
- Experimental imported alternative flake (G-6)

Accomplishments Task 1 – Graphite Selection

Treat Chemistry

- Current treat process (TP1).
- Alternative routine process higher expansion (TP2)
- Experimental process (TP3)

Expansion Method

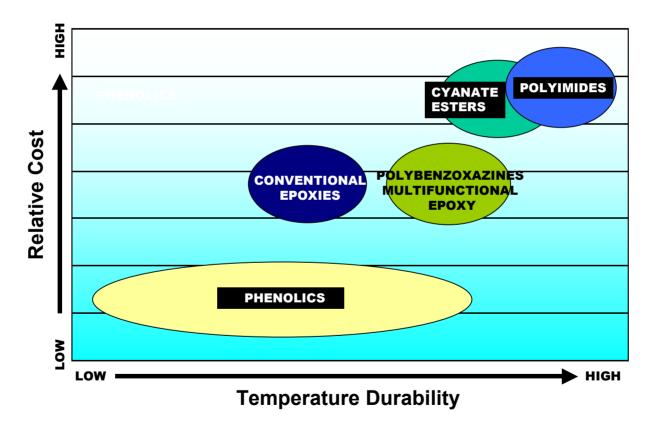
- Current process (EP1)
- Experimental process (EP2)
- Alternative Experimental process (EP3)

Sizing

- Production sizing (SZ-1)
- Experimental sizing (SZ-2)

Thickness

- Current thickness (MT-1)
- Target thickness (MT-2)



Accomplishments Task 1 – Graphite Testing Protocol

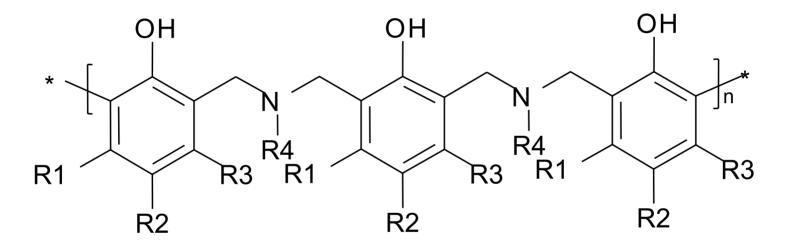
Test Description	Raw Flake	Treated Flake
Surface Acid		X
Graphite Flake Fluorine Content		X
рН		X
Oxidation Rate		X
Taber Stiffness		X
Flake Expansion		X
Tap Density	X	
Sizing	X	
Leco Sulfur %	X	
TMA In tumescence Temperature		X
Moisture		X
Volatiles		X
Ash		X
X-Ray Diffraction Lattice Parameters	X	X
ICP-AES	X	
XRF		X

Resin Cost and Temperature Overview

GRAFTECH ADVANCED ENERGY TECHNOLOGY INC. A GrafTech International Ltd. company

Benzoxazines

- Reaction product of amine, phenol, and formaldehyde
- High purity : No halogens [ie; Epichlorohydrin]
- Thermosetting chemistry
- High T_g
- Low coefficient of thermal expansion
- Low moisture absorption.
- Electrical properties better than the epoxy analog
- Can react with epoxies and other thermosets.


Ероху

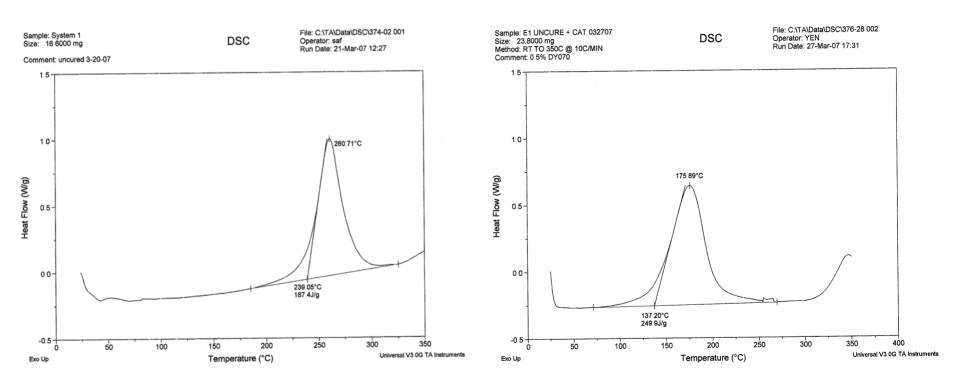
- Standard Chemistry offering many well proven products
- Thermosetting chemistry
- Multifunctional epoxies will provide high T_g properties
- Good mechanical properties

Polymer Backbone of Polybenzoxazine

┥ 18 🕨

DSC Date Resin Systems

			Peak Onset	Exotherm Peak	Exothermic
			Temperature	Temperature	Heat
Resin	Formulation	Catalyst	°C	°C	J/g
Benzoxazine	1	No	239.1	260.7	187.4
	2	No	239.4	262.5	186.9
	3	No	242.8	263.8	219.2
	4	No	202.2	205.5	150.9
	5	No	245.4	266	249.6
Epoxy	1	Yes	137.2	175.9	249.9
	2	Yes	NA	NA	NA
	3	Yes	140.5	169.5	187.5
	4	No	154.3	193.5	220.5
	5	No	141.9	178.4	168.5
	6	No	130.7	194.3	118.3



	Cure Data Resin Systems											
System	Catalyst	Cure Temperature ℃	Cure Time hr	Gel Time @ 200 °C s		DMA Storage Modulus T _g °C	TMA T _g °C	TMA CTE μm/m -°C				
Benzoxazine												
1	No	230°C/2	2.0	>600	215	185	183	64				
2	No	205°C/2	2.0	>600	171	137		82				
2A	No	205°C/1.5	1.5	>600	232	198		74				
2B	No	205°C/2	2.0	>600	225	183		97				
		205 hold ramp to 230	2			100		07				
3	No	230 hold	1	>600	208	183	175	67				
4	No	205°C/2	2.0	420	148	120	114	75				
5	No	205 hold ramp to 230 230 hold	2 1 1	>600	183	148	104	65				
6	Yes											
Ероху	Yes											
1	Yes			30.3								
2	Yes											
3	Yes			64.3								
4	No			135.7								
5	Yes			31.3								
6	No			181.2								

GRAFTech Advanced Energy Technology Inc. A GrafTech International Ltd. company

Resin DSC Plots

GRAFTech Advanced Energy Technology Inc. A GrafTech International Ltd. company

4 21 🕨

Resin / Thermoset Requirements for Next Generation Bipolar Plates									
Property	Priority	Test	Technical Target						
Processing									
Resin viscosity (in acetone)	1	Shear/Brookfield, 25°C	0.8 cp (Max 2.0 cp)						
Curing conditions	1	DSC	205°C, 1 h (Max. 230°C, 2 h)						
Polymerization volatiles	1	TGA	No detectable change						
Resin latency									
Ambient	1	DSC/Thermosel	Indefinite						
Thermal cycle	1	One cycle to 85°C with 45-min. hold	Indefinite (Min. one month shelf life)						
Resin softening point	1	DMA/TMA	50°C (Max. 100 °C)						
Shrinkage (linear, volumetric)	2	Huntsman internal							
Thermal									
Glass transition (T _g)	1	DMA/TMA	210°C (Min. 150°C)						
Dimensional stability	1	TMA (z-axis)	40 ppm °C ⁻¹ (Max. 70 ppm °C ⁻¹)						
Mechanical									
Flexural									
Strength	2	ASTM D790 – Method 1 – Procedure A	8700 psi (25°C), 6100 psi (130°C)						
Modulus	2	ASTM D790 – Method 1 – Procedure A	2.1 Mpsi (25°C), 1.4 Mpsi at (130°C)						
Flexural strength, modulus retention									
Thermal shock cycling	1	USCAR III (100 cycles, -40°C to 130°C)	No detectable change						
Thermal cycling	1	USCAR III (10 cycles -40°C to 130°C)	No detectable change						
Freeze start up	2	30 d at -40°C	No detectable change						
Hot and humid conditions	1	48 h in air at 130°C and 100% RH	50%						
Tensile									
Strength	2	ASTM D638 – Type 1	5500 psi (25°C), 3900 psi (130°C)						
Modulus	2	ASTM D638 – Type 1	5 Mpsi (25°C), 7 Mpsi (130°C)						
Compressive									
Strength	2	ASTM F36 (Procedure J)	13,700 psi (25°C), 10,800 psi (130°C)						
Modulus	2	ASTM F36 (Procedure J)							

Resin / Thermoset Requirements for Next Generation Bipolar Plates									
Property	Priority	Technical Target							
Toughness	2	ASTM D5045-99							
Creep	2	ASTM D2990 (modified)	0 at 200 psi, 130°C						
Chemical/Purity									
Leaching treatment (50 h, 90°C) in Water 1 mM H2SO4 (aq) 2 wt. % MeOH (aq) 60 wt. % MeOH (aq) Glycol	1	HPLC (amines, aromatics)	Not detectable						
Leaching treatment (50 h, 90°C) in Water 1 mM H2SO4 (aq) 2 wt. % MeOH (aq) 60 wt. % MeOH (aq) Glycol	1	Ionic Conductivity	Not detectable						
Primary Metals	2	ICP (Ba, Br, B, Cl, Cr, Cu, Fe, Ti, V, Zn) FTIR (Br, Cl)	Not detectable						
Secondary Metals	2	ICP (Ag, Al, As, Be, Bi, Ca, Cd, Co, K, Li, Mg, Mn, Mo, Na, Ni, P, Sb, Si, Sn, Sr, Tl, U, V, Zr)	Not detectable						
Other									
Fluid absorbance	2	Incorporated into leachables testing	No detectable fluid uptake						
Flammability	2	UL94	V-0						
Electrical	3	Huntsman internal							
Environmental friendliness	3	International Material Data System (IMDS)							

Future Work - 2007

Tasks scheduled for completion in 2007 Corresponding Milestones Shown with Target Dates

- 1. Expanded Graphite Material Selection
 - Optimized Expanded Graphite Identified, 10/9/07
- 2. Resin Identification and Selection
 - Resin Formulations Down selected, 5/24/07
- 3. Small-Scale Composite Preparation and Evaluation
 - Optimum Composite Compositions Identified, 8/31/07
 - Evaluate Thermal and Mechanical Properties, 9/5/07
 - Final Resin Candidates Down selected, 9/5/07
- 4. Machining and Embossment of Small-Scale Composites
 - Composites Ready for Embossed and Machined Plates, 10/17/07
 - Machined Plates for Single Cell Testing Completed, 11/14/07

Future Work - 2008

Tasks scheduled for completion in 2008 Corresponding Milestones Shown with Target Dates

- 5. Single Cell Testing
 - Single Cell Test Completed, 2/11/08
 - Primary Resin/Composite Candidate Down selected, 2/28/08
- 6. Design and Manufacture of Full-size Bipolar Plates
 - Full Size Tool and Leak Check Device Ready, 8/6/08
 - Full Size Plates Ready for Short Stack Testing, 11/5/08
- 7. Short Stack Test of Full-size Plates
 - Short Stack Ready for Testing, 12/11/08
 - Final Review of Short Stack Test Results, 2/27/09
 - Full Size Plate Stack Delivered to DOE, 3/9/09
- 8. Economic Assessment of New Technologies
 - Complete Economic Assessment, 12/15/08

GRAFTECH Advanced Energy Technology Inc. A GrafTech International Ltd. company

Summary

- Expanded Graphite Resin Based composites have a history of success as PEM Flow Field Plate materials under current operating requirements
 - Performance and cost projections indicate that these plates have an overall advantage over competing technologies
- The goal of this work is to develop plates which will deliver on the DOE high temperature performance and low manufacturing cost targets for 2010 and beyond.
- These goals will be met through the low cost manufacturing processes based on expanded graphite technology and the high temperature performance of a new class of resins.

