Nitrided Metallic Bipolar Plates

M.P. Brady (project lead) <u>P. F. Tortorelli</u> Oak Ridge National Laboratory Oak Ridge, TN 37831-6115 contact: bradymp@ornl.gov

Project ID # FCP-11

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Effort Devoted to Scale Up and Demonstration of Thin Stamped Metallic Bipolar Plates

Timeline

- Start- May 1, 2007
- Finish- May 1, 2010
- New Project

Budget

- Total project funding
 - \$4530 K (+ \$400 K Match)
- Funding for FY2007
 - **\$1200 K**

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Barriers

- A. Durability
- B. Cost

Targets (2010)

- resistivity < 10 mohm-cm²
- corrosion < 1 x10-6 A/cm²
- cost < \$5/kW

Team Members

- ORNL (Lead)
- Allegheny Ludlum
- Arizona State University
- GenCell Corp
- LANL
- NREL

Objective: Surface Treatment to Protect Stamped Metallic Bipolar Plates

Overall Goal: Demonstrate potential for metallic bipolar plates to meet 5000 h automotive durability goal at cost < \$5/kW

<u>Year 1 Goal:</u>

No significant warping or embrittlement of the stamped plates by the nitriding-amenability of approach established for thin stamped foils

Year 2 Goal:

Single-cell fuel cell test performance for ~25 cm² stamped and nitrided metallic bipolar plates equivalent to that of graphite (~1000 h, cyclic)

Year 3 Goal:

- 10 cell stack test of 250 cm² stamped and nitrided metallic bipolar plates under automotive drive-cycle conditions (~2000 h)
- Potential to manufacture stamped and nitrided metallic bipolar plates at < \$5/kW demonstrated

 Surface conversion, <u>not a deposited coating</u>: High temperature favors reaction of all exposed metal surfaces

 No pin-hole defects (other issues to overcome)
 Amenable to complex geometries (flow field grooves)

Stamp then nitride: Industrially established and cheap

Good Single-Cell Drive-Cycle Durability Test Results for Model Nitrided Ni-50Cr Plates

- <u>1160 h of drive-cycle testing</u> (after initial 500 h/0.7V/80°C test screening)
 -0.94V/1 min; 0.60V/30 min; 0.70V/20 min; 0.50V/20 min
 -additional 24 full shutdowns superimposed
- No performance degradation/No attack of the Cr-nitride -trace level (2x10⁻⁶ g/cm²) of Ni detected in MEA, suspect local CrNiN spots

Need Fe-Base Alloys to Meet \$5/kW Bipolar Plate Cost Goals

- Dense Cr-nitride surface formation demonstrated on a model Fe-base alloy, Fe-27Cr-6V wt.%
 - pre-oxidation key to protective surface nitride formation
 - -V segregation into Cr-oxide makes it more readily nitrided

Alloy Challenges

- -Lower Cr and V levels to reduce alloy cost
- Co-optimize preoxidation/nitridation to segregate Cr, V to surface
- Down select to ferritic (cheaper) or austenitic (more formable) alloy base

Dense, Continuous Nitride Surface Obtained

SEM Cross-Sections of Preoxidized and Nitrided Fe-27Cr-6V

- Low contact/through-thickness electrical resistance
- Low corrosion current densities under simulated anodic and cathodic conditions

Vanadium Additions to Fe-27Cr Result in Protective Cr-Nitride Surface

Polarization in Aerated pH 3 Sulfuric Acid at 80°C

Corrosion Current Density (A/cm²)

Corrosion resistance comparable to nitrided Ni-50Cr observed for nitrided Fe-27Cr-2V and Fe-27Cr-6V (850-900°C, < 24 h, N₂-4H₂)

Good Corrosion Resistance Also Observed Under Simulated Anode Conditions

Polarization in Ar-4H₂ Purged pH 3 Sulfuric Acid at 80°C

Nitrided Fe-27Cr-6V Meets and Maintains Contact Resistance Goal

- Nitridation significantly reduces interfacial contact resistance (ICR)
- Slight increase in ICR on polarization-still meets goal
- Untreated stainless steels don't meet ICR goals Oak Ridge National Laboratory U. S. Department of Energy

Little Effect of Polarization on Surface Chemistry of Nitrided Fe-27Cr-6V

Auger Electron Spectroscopy of Nitrided Fe-27Cr-6V

- Polarized 7 h at 0.84 V SHE in 1M H₂SO₄ + 2 ppm F⁻ air purged at 70 °C (similar results under H₂-purged anodic conditions)
- No Fe detected in nitrided surface

V Additions Destabilize Oxide Relative to Nitride Compared to Cr

900°C Predominance Diagrams

•Order of magnitude greater O_2 impurity stability for VN relative to CrN at 900°C in N₂-4H₂ (100 vs 10 ppm O_2)

•V works because Cr₂O₃-V₂O₃; Cr₂N-V₂N; CrN-VN all mutually soluble

 $\bullet V_2O_3$ and Cr-doped V_2O_3 also conductive – combined with intermixed morphology and N_2 -doping yields good ICR values

Teaming and Primary Responsibilities

• Oak Ridge National Lab:

Alloy design, nitridation optimization, characterization

- National Renewable Energy Lab: Corrosion/contact resistance evaluation
- Allegheny Ludlum:
 Alloy foil manufacture
- GenCell Corp:

Design and stamp bipolar plate flow field features

Arizona State University:

Single-cell testing (assisted by Gencell, ORNL)

Los Alamos National Lab:

Stack testing and performance assessment, characterization

Stamped Fe-Cr-V Alloys Can Meet \$5/kW Transportation Cost Goals

GenCell Corp Cost Estimates for Stamped Bipolar Plates (Nitriding Costs Not Included)

Foil	Density	Bipolar Plate Cost (\$/kW)		
<u>Thick. (in)</u>	<u>kg/kW</u>	<u>\$3/lb Alloy</u>	<u>\$5/lb Alloy</u>	<u>\$7/lb Alloy</u>
0.002	0.26	\$2.31	\$3.47	\$4.58
0.004	0.38	\$3.15	\$4.26	\$6.57
0.008	0.64	\$4.86	\$7.69	\$10.51

High Cr ferritic alloys \$3-7/lb: viable nitriding costs

- E-BRITE® (Fe-26Cr-1Mo wt.%): \$5-7/lb commercial price for foil
- Alloy 444 (Fe-18Cr-2Mo wt.%): \$3-5/lb commercial price for foil
- Above alloys comparable to Fe-Cr-V alloys as Mo and V costs similar

Assumptions: 360 cm² active area plate (494 cm² total area), 2 mil secondary foil for cooling (nested stacking), parallel flow field 0.025" depth, 2010 MEA target power density OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

GenCell Corp Stamped Bipolar Plate Approach

Above shown for molten carbonate fuel cell bipolar plates, approach currently being extended to PEM and SOFC

