Visualization of Fuel Cell Water Transport and Performance Characterization Under Freezing Conditions

- **RIT** Satish Kandlikar, Navalgund Rao, Owen Lu
- **GM** Thomas Trabold Jon Owejan
- MTU Jeffrey Allen

May 16, 2007

ID # FCP22

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date: 03/01/2007
- End date: 02/28/2010
- Percent complete: 3%, 1 month/3 years

Budget

- Total project funding
 - DOE: \$ 2.68M
 - Contractor: \$ 0.8M
- FY06: \$ 1.4M
- FY07: \$ 0.99M

Barriers

- Barriers addressed:
 - C: Performance
 - D: Water transport within the stack
 - E: System thermal and water management

- Collaborations:
 - RIT, GM, MTU
- Project management:
 - Monthly teleconferences
 - DOE quarterly progress reports
 - DOE meetings and conferences

Objectives

Overall: To gain a fundamental understanding of the water transport processes in the PEMFC stack components

To minimize fuel cell water accumulation while suppressing regions of dehumidification by an optimized combination of:

- > New gas diffusion layer (GDL) material and design
- > New bipolar plate (BPP) design and surface treatment
- > Anode/cathode flow conditions
- **2007:** Novel characterization techniques and baseline performance characterization:
 - > Ex-situ and in-situ visualization and characterization
 - Fluorescence microscopy
 - Neutron radiography
 - Local current density and HFR distribution

Approach

Experimental: This project will provide a framework for combining component-level research into workable fuel cell stack concepts

Fundamental research

Fuel cell concepts

Component-Level Study • GDL •Structure •Morphology •Wettability • Flow channel •Size and Geometry •Header design •Surface treatment	Combinatorial Study• Water transport within GDL•Fluorescence microscopy•Infrared imaging• Water transport on the GDLsurface and in channels•High speed visualization•Neutron radiography•3-D microscopy	 Fuel Cell-Level Anode/cathode flow conditions Optimized combination of GDL, BPP and flow conditions Freeze-thaw performance
•Surface treatment	-3-D microscopy	

Modeling: The ex-situ experimental data and modeling efforts of the component-level studies will be integrated into a comprehensive two-phase flow performance and stability engineering model.

Collaborative Research Plan

Baseline System Definition

1. Flow Field

Parameter	Data or constraints considered
Cathode channel / land width	 Published channel / land optimization studies Minimize gas diffusion layer intrusion
Anode channel / land width	 Diffusion coefficient of H₂ relative to O₂ Maintain large land-to-land contact area to reduce ohmic loss Maintain high volumetric flow rate per channel
Channel depth	 DOE FreedomCAR volumetric power density target = 2 kW/L Bipolar plate thickness and manufacturing tolerance
Channel pattern	 Minimize channel water accumulation Minimize reactant pressure drop Insensitivity to plate misalignment
Active area aspect ratio	 Assumed 200V stack (0.6V per cell) at peak power Assumed 40% stack volume in gas/coolant headers Square active area, from which a 50 cm² "slice" is defined
Channel – to – header geometry	• OEM patent literature on methods for directing flow around plate seals

Baseline System Definition (cont'd)

2. Gas Diffusion Layer (GDL)

Parameter	Data or constraints considered
Availability	Commercially available material, with commitment from manufacturer to supply for at least 3 years
Substrate format	Roll-good, for relevance to scale-up to high-volume manufacturing
Treatment	• Internally developed hydrophobic treatment and microporous layer (MPL) formulation, so that material and application process parameters can be independently controlled
Performance	• At or near benchmark performance under relatively dry (~80% exit RH) and wet (~120% exit RH) conditions

3. Membrane electrode assembly (MEA)

Availability	• Commercially available material, with commitment from manufacturer to supply for at least 3 years	
Pt loading	• Thrifted platinum content, moving toward DOE target of 0.25 mg/cm ² total	
Performance	• At or near benchmark performance under relatively dry (~80% exit RH) and wet (~120% exit RH) conditions	

Ex-situ Experiment Design

Objectives	 To study two phase flow stability in each channel and establish two phase flow stability criteria. To study water distribution in each channel.
Measurements	 Water flow rate and pressure. Gas flow rate and pressure drop. Direct view of water droplets and films, their distribution on GDL surface, and the water film thickness measurement. Simultaneously visualize parallel channel flow dynamics.
Experimental setup	 Transparent BPP. Top and side view by high speed camera. Infrared camera and imaging to detect presence of water film and measure the water film thickness. Mass flow rate and pressure drop at inlet and outlet sections.

Water Droplet Visualization

- High speed imaging
- GDL/channel studies
- Single-channel, multiple channel and header flows
- Flow patterns, instabilities and pressure drop

GDL Component Studies — Material Properties

Contact Angle Studies:

- Developed Koehler illumination technique
- Developing image processing technique
- Developing GDL handling protocol to address contamination (see center image)
- Started contact angle measurement calibration
- Beginning GDL parametric studies

Structure and Morphology Studies:

- Students being trained on SEM's
- Developing handling/preparation protocols for SEM samples

SEM Images of GDL

Koehler Illumination Apparatus

Top View of Water Drop on GDL

Side View - Raw Image

Side View - Gray Scale

Edge Detection of Drop

Three water drops on a GDL, each with a different volume – each drop has a different contact angle due to surface contamination.

GDL Component Studies — Capillary Transport Model

2D Network Simulator

2D Network Simulator: Preliminary Results

Ca is the Capillary number

M=0.1 Ca=1 θ>90

M=0.001 Ca=10 θ<90

Future Work (FY07 - FY08)

- Baseline performance characterization
 - Ex-situ multi-channel performance (RIT)
 - ➢ Fuel cell experiments with visual access (RIT)
 - ➢ Freeze-thaw experiments with neutron radiography (GM)
 - > Post-mortem analysis of baseline material set (MTU)

Parametric studies at component-level

- ➢ GDL component studies (MTU)
- Channel component studies (RIT)
- Combinatorial assessment on ex-situ apparatus
 - > Ex-situ multi-channel flow experiments (RIT)
 - ➤ Multi-channel two-phase flow model (RIT/GM/MTU)
- Decision point #1 after combinatorial ex-situ assessment

Summary

Impact:

- Low-cost, robust PEM fuel cell system
- ➢ Faster fuel cell commercialization

Approach:

- A framework for combining component-level research into workable fuel cell stack concepts
- ➢ Intense collaboration between RIT, GM and MTU

Deliverables:

- Optimized materials, design features and operating parameters under normal and freezing conditions
- Fundamental understanding of water transport processes in PEM fuel cells
- > Novel characterization techniques