

... for a brighter future

Non-Platinum Bimetallic Cathode Electrocatalysts

Debbie Myers Argonne National Laboratory

2007 DOE Hydrogen Program Review Arlington, VA, May 15-18, 2007

> Project ID: FCP28

This presentation does not contain any proprietary, confidential, or otherwise restricted information

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Overview

Timeline

Project start data:

January, 2007

Project end data:

December, 2010

Percentage complete:

10%

Budget

Total project funding:

- DOE: \$5,434 K
- Contractor share: \$172 K
- Funding received for FY'07:
 - DOE: \$945 K
 - Contractor share: \$29 K

Barriers

Barriers addressed

- A. Durability
- B. Cost
- C. Electrode performance

Partners

- William A. Goddard, III, California Institute of Technology (Caltech)
- John Regalbuto, University of Illinois at Chicago (UIC)
- Clemens Heske, University of Nevada at Las Vegas (UNLV)
- Karren More, Oak Ridge National Laboratory (ORNL)
- Piotr Zelenay, Los Alamos National Laboratory (LANL)

Objectives

- Develop a non-platinum cathode electrocatalyst for polymer electrolyte fuel cells to meet DOE targets that:
 - Promotes the direct four-electron oxygen reduction reaction (ORR) with high electrocatalytic activity
 (0.44 A/mg = 1.720, uA/gm² @ 0.0 V = 1)

(0.44 A/mg_{PGM}; 720 μA/cm² @0.9 V_{iR-free})

- O₂ reduction reaction (ORR) in acidic media
 - *Two-electron transfer Four-electron transfer*

 $O_2 + 2H^+ + 2e^- = H_2O_2$

 $O_2 + 4H^+ + 4e^- = 2H_2O$

- Is chemically compatible with the acidic electrolyte and resistant to dissolution (<40% electrochemical area loss over 5000 h@<80°C and 2000 h@>80°C)
- Is low cost (\$5/KW, 0.3 mg PGM/cm²)

FY'07 Objective

 Synthesize and evaluate the oxygen reduction activity and stability of nanoparticles of three palladium alloy systems

Approach

- Bimetallic systems (base metal-noble metal)
 - Surface segregation of minor noble metal component to form protective layer
 - Base metal component chosen to modify d-band center of noble metal making it more "Pt-like"
 - Choice of bimetallic systems is based on surface segregation energies and d-band center shift
 - Examples: Bimetallics of palladium, iridium, and rhodium
- How this project addresses the technical barriers
 - A. Durability: altering oxophilicity of catalyst to prevent oxidation-related degradation
 - B. Cost: lowering PGM loading by replacing PGM in electrocatalyst particle core with base metal
 - C. Electrode performance: modifying surface electronic properties to enhance ORR activity

Noble metals were chosen based on stability and tendency to form surface "skins"

- Noble metals are the most stable in acidic environment
 - Pd $E^{o'}$ for dissolution = 0.987 V
 - Rh $E^{o'}$ for dissolution = 0.76 V
 - Ir $E^{o'}$ for dissolution = 1.156 V
 - Pt $E^{o'}$ for dissolution = 1.188 V
- Base metals were chosen due to their ability to modify the electronic properties of the noble metal and for the tendency of the noble metal to form a protective skin on the noble metal-base metal alloy

Tendencies of noble metals to segregate to the surface of base metal hosts have been calculated by J. Nørskov and co-workers [A.V. Ruban, H.L. Skriver, J.K. Nørskov, Phys. Rev. B, 59 (1999)15990.]

The d-band centers of candidate noble metals can be shifted towards desired values by alloying with base metals

- There is a relationship between the d-band center of the metal and its ORR activity Nørskov-Hammer theory and results of LBNL group
- Pt₃Co has desirable d-band center and thus a high ORR activity (LBNL)

Project tasks

- Perform computational studies to guide choice of systems and compositions (Caltech)
- Fabricate and characterize model systems-bulk electrodes to guide choice of systems and compositions (UNLV, Argonne)
- Synthesize nano-particles on high-surface-area carbon support (Argonne, UIC)
- Characterize nano-particle ORR activity, composition, electronic structure, and morphology (Argonne, ORNL, UNLV, UIC)
- Determine stability via dissolution measurements, mechanisms of degradation, and predict lifetime via modeling (Argonne)
- Fabricate, test, and characterize membrane-electrode assemblies with newlydeveloped electrocatalyst (LANL, ORNL)
 - determine performance and durability using accelerated test protocol

Oxygen reduction activity is highly dependent on Pd:Cu ratio and post-deposition heat treatment (0.8 V, room temp.)

Catalysts prepared by co-impregnation of Vulcan carbon with metal precursors and post-deposition heat treatment in a reducing atmosphere

Oxygen reduction activity is highly dependent on Pd:Cu ratio and post-deposition heat-treatment (0.9 V, room temp.)

Pd:Cu Molar Ratio

Post-heat treatment acid treatment improved oxygen reduction activity of Pd:Cu catalysts (0.8 V, room temp.)

Post-heat treatment acid treatment improved oxygen reduction activity of Pd:Cu catalysts (0.9 V, room temp.)

Highest ORR activity was seen for catalysts showing formation of ordered PdCu phase

Co-impregnation synthesis technique leads to large polydisperse alloy particles

Pd: Cu Molar Ratio	Particle size (nm)		
	300°C	600°C	800°C
1:9	10.8 ± 2.1	17.2 ± 3.3	46.3 ± 11.2
1:3	8.1 ± 2. 8	23.3 ± 8.3	55.0 ± 14.5
1:1	6.1 ± 1.6	21.0 ± 5.1	69.8 ± 18.1
3:1	9.1 ± 3.3	21.8 ± 5.5	68.3 ± 10.7
9:1	6.5 ± 1.8	21.9 ± 4.9	73.5 ± 15.4

Synthesis of nano-particle bimetallic carbon-supported electrocatalysts

- Goals
 - Achieve noble metal-base metal bimetallic core with noble metal skin
 - Minimize particle size, maximize surface area/gram PGM
 - Achieve uniform and controllable particle size and composition
- Techniques
 - Colloidal synthesis
 - Strong electrostatic adsorption

20 nm

Single-phase colloidal technique is being developed to form mono-disperse bimetallic nano-particles (Argonne)

Chemical reduction of metal precursors in the presence of organic capping molecules (e.g., oleylamine and oleic acid)
 ✓ capping molecules stabilize small particles, limit particle growth

Pre-formed particles loaded on carbon support

> capping molecules maintain particle dispersion

 Removal of capping molecules through thermal or electrochemical decomposition
 ✓ capping molecules can be removed at moderate temperatures

50 nm Unsupported Pd-Base Metal

50 nm Pd-Base Metal/C

Strong electrostatic adsorption technique for synthesis of core-shell bimetallic nano-particles (UIC)

SEA technique has been demonstrated by UIC for Pt-Co bimetallics

Impregnate at pH between pHs of zero charge (PZCs) for selective adsorption and formation of bimetallics

Computational analyses are being used to guide the choice of bimetallic systems and compositions (Caltech)

- Quantum mechanical calculations
 - Detailed reaction mechanisms and rate-limiting processes
 - Binding energies and structures for possible intermediates (i.e., O, H, O₂, H₂, OH, OOH, H₂O)
 - How alloying and nano-structure affect the ORR rates
- Large-scale molecular dynamics simulations using ReaxFF
 - Trends in chemisorption energies of oxygen-containing species
 - Effect of nano-particle size, alloying elements, surface defects and segregations, step edges, and kinks on the barriers and rates of the ORR

Comparison of the energetics of O₂ reduction via OH formation on candidate metals (Caltech)

Comparison of the energetics of O_2 reduction via OOH formation on candidate metals (Caltech) $\Delta H-Pt = -1.62 \text{ eV}$

Calculated barrier for OH formation is lowest on Pd (Caltech)

Calculations on Pt indicate that the rate determining step is:

 $\rm H_{ads} + \rm O_{ads} \rightarrow \rm OH_{ads}$

Pd has the lowest barrier for this step compared to the pure metals Pt, Ir, and Cu and to Pt_3Ni alloy (along $\mu_{2/3}$)

Pathway for Pt₃Ni alloy

Model systems (bulk electrodes) will be used to guide the choice of bimetallic systems (UNLV)

- Used to establish relationship between physicochemical properties and ORR activity
- Model systems
 - Fabrication by e-beam evaporation
 - Surface composition verification by XPS

- Electronic characterization (UPS, IPES, STS, KPFM)
 - Energy of d-band
 - Density of occupied and unoccupied electronic states
- Oxygen reduction activity, reaction mechanism, and stability
 - Electrochemical measurements via hanging meniscus technique
 - Post-test spectroscopic and microscopic characterization to determine changes in composition, morphology, and electronic properties

Catalyst activity and structural characterization of carbonsupported nano-particle catalysts

- Determine oxygen reduction activity and reaction mechanism (4 e- or 2 e-)
 - Thin-film rotating ring-disk technique
- Verify that desired structures, compositions, and particles sizes are obtained
 TEM, EDAX, XRD, XAS, XPS, XES, IR of adsorbed CO
- Characterize nano-particle electronic structure
 - Soft X-ray and UV spectroscopies

Accelerated durability testing of carbon-supported nanoparticle catalyst

- Potentiostatic and potential cycling dissolution rates
- Equilibrium concentration of dissolved metallic components of electrocatalysts
- Mechanism of dissolution reaction via rotating ring-disk experiments
- Modeling of performance degradation (beginning with Pt/C commercial electrocatalyst)

Electrocatalysts that pass activity and durability screening tests will tested in MEAs

- Membrane-electrode assembly fabrication, testing, and characterization
 - MEA fabrication
 - MEA performance and durability testing
 - Pre- and post-test analyses using TEM, XRD, and SAXS

LANL H₂-Air MEA Fabrication Procedure

ORNL TEM analyses of LANL MEA

Summary of Progress

- Milestone (12/07): Synthesize and evaluate the oxygen reduction reaction (ORR) activity and stability of nano-particles of three palladium alloy systems with goals of:
 - specific activity: 720 μA/cm²; mass activity: 0.44 A/mg (@900 mV_{iR-free}); volumetric activity: >130 A/cm³ (@800 mV_{iR-free})
- Progress:
 - Synthesized a series of carbon-supported Pd-Cu catalysts via coimpregnation; determined the effect of Pd:Cu ratio, post-deposition heat treatment temperature, and acid treatment on the phases formed, particle size, particle size distribution, and ORR activity
 - Highest room temperature ORR mass activity observed: 0.82 A/mg Pd (800 mV); 0.016 A/mg Pd (900 mV)
 - Formed palladium-copper alloy on carbon support with smaller particle size and narrower size distribution using colloidal technique
 - Synthesized 1-3 nm Pd particles on various high surface area carbon supports using the strong-electrostatic adsorption technique
 - Calculated the energetics of the oxygen reduction reaction on candidate noble metals and copper

Future work

- Remainder of the first year
 - Synthesize and fully characterize two additional palladium-base metal systems
 - Utilize electrochemical methods for removing the capping agents from the carbon-supported colloidal bimetallics to retain small particle size during capping agent removal
 - Form carbon-supported palladium-base metal nano-particles using the strong electrostatic adsorption technique
 - Complete calculation of the reaction step barriers in the oxygen reduction reaction
 - Calculate the thermodynamically favorable alloy atomic structure
 - Determine the effect of temperature treatment on the surface segregation of alloy components from bulk electrodes
 - Fully characterize the electronic structure of Pd-Cu bulk electrodes
- Next year
 - Explore three iridium-base metal systems and fabricate and test MEAs using promising palladium-base metal catalysts

Team members

- Argonne National Laboratory: Xiaoping Wang, Nancy Kariuki, Suhas Niyogi, Bilge Yildiz, and Jennifer Mawdsley
- California Institute of Technology: William A. Goddard, III, Boris Merinov, Yao Sha, and Ted Yu
- University of Illinois at Chicago: John R. Regalbuto and Lawrence DSouza
- University of Nevada, Las Vegas: Clemens Heske, Timo Hofmann, and Lothar Weinhardt
- Los Alamos National Laboratory: Piotr Zelenay
- Oak Ridge National Laboratory: Karren More

