

Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells

Yong Wang, Yuehe Lin, Vilayanur Viswanathan, Jun Liu, Conrad Zhang Pacific Northwest National Laboratory

> Stephen Campbell Ballard Power Systems

Jingguang Chen, Brian Willis Delaware University

Sheng Dai Oak Ridge National Laboratory May 17, 2007

Project ID # FCP29

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date Jan 2007
- Project end date Dec 2010
- Percent complete 8%

Budget

- Total project funding
 - DOE share \$4,234K
 - Contractor share \$255K
- Funding received in FY07
 - \$1,241 (federal, requested)
 - \$820K (federal, approved)
 - \$72K (cost share)
- Funding reduced in FY07 due to late start. Hence project duration extended by 4 months to Dec 2010

Barriers

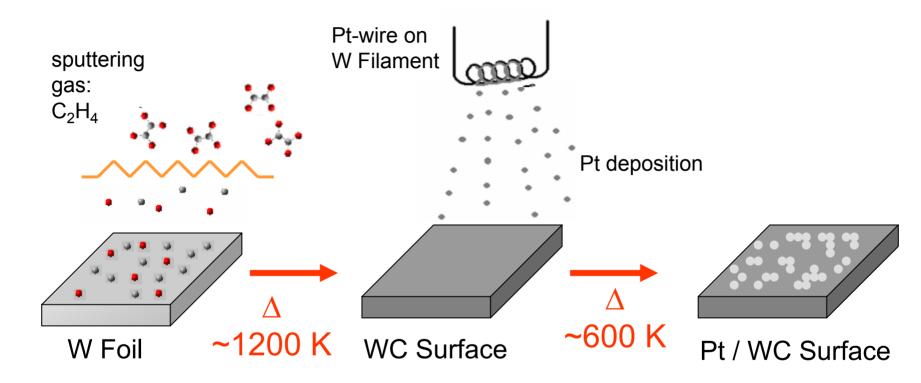
- Barriers addressed
 - A. Durability of cathode catalyst supports
 - C. Performance of cathode supported catalyst

Partners

- Ballard Power Systems guidance on fuel cell testing
- Oak Ridge National Laboratory mesoporous carbon supports
- University of Delaware Tungsten carbide support
- Pacific Northwest National Laboratory
 - cathode synthesis and cathode/fuel cell testing
 - project management

Objectives

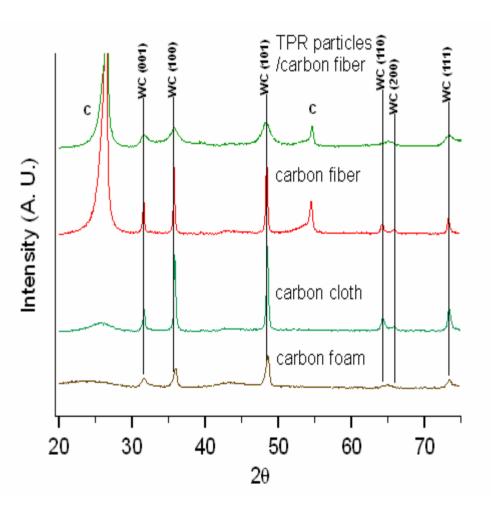
Overall	Develop and evaluate new classes of alternative and durable high-performance cathode supports
2007	 Fundamental understanding of model systems Synthesis of high surface area cathode supports Downselect carbon support with potential for better stability than commercial carbon black support
2008	 Identify lead cathode compositions with potential for better durability than carbon black supported Pt cathode
2009	 Identify compositions with mass activity of > 0.44 A/mg Pt and 5X better stability than carbon black supported catalyst for cell demonstration.
2010	 Demonstrate durability under accelerated test protocols that meet lifetime criteria under development at DOE


Approach

- Develop and evaluate new classes of alternative and durable cathode supports using graphitized carbons as scaffolds and protect the carbon surface with
 - Tungsten carbide (WC)
 - Oxycarbides
 - Conductive metal oxides (ITO)
- Enhance Pt dispersion and stability on these new classes of cathode supports.
- Conduct electrochemical tests on above supported catalysts

Technical Accomplishments

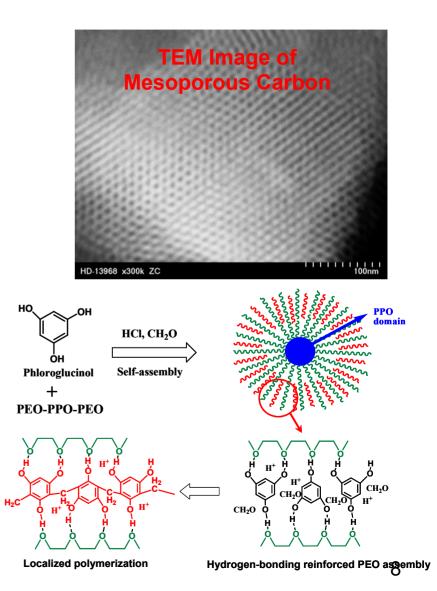
- Synthesized Pt/WC
 - Surface preparation of polycrystalline W
 - Decomposition of ethylene over hot filament and annealing by resistive heating at 1200K to form WC
 - Analysis of surface composition using XPS
- Synthesized WC on different carbon substrates using PVD, CVD and TPR
- Established protocol for synthesis of highly stable mesoporous carbons retaining porosities under graphitization conditions
- Conducted preliminary TGA corrosion tests of graphitized ordered mesoporous carbon loaded with Pt
- Loaded Pt on various supports by incipient wetness
- Controlled Pt particle size by varying the incipient wetness process parameters such as solvent, Pt loading, carbon surface properties and post-incipient wetness process conditions.
- Conducted preliminary electrochemical experiments to determine ECSA, performance and stability of supported catalyst


Synthesis of Pt/WC

- Decomposition of ethylene over hot filament
- Annealing by resistive heating to ~ 1200 K to form WC
- Analysis of surface composition using XPS

Synthesis of WC on Different Carbon Substrates: PVD, CVD and TPR

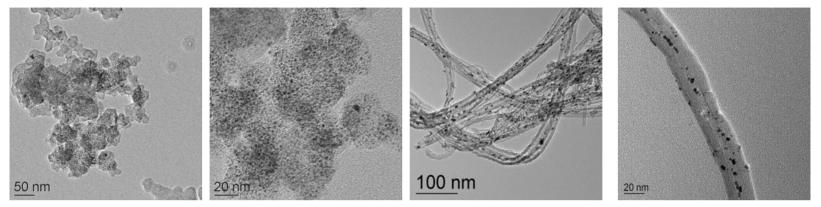
- PVD reactive deposition with post annealing produced pure WC on various carbon substrates for fuel cell testing
- Similar WC films produced from CVD synthesis
- Supported WC particles produced by temperature programmed reaction (TPR)



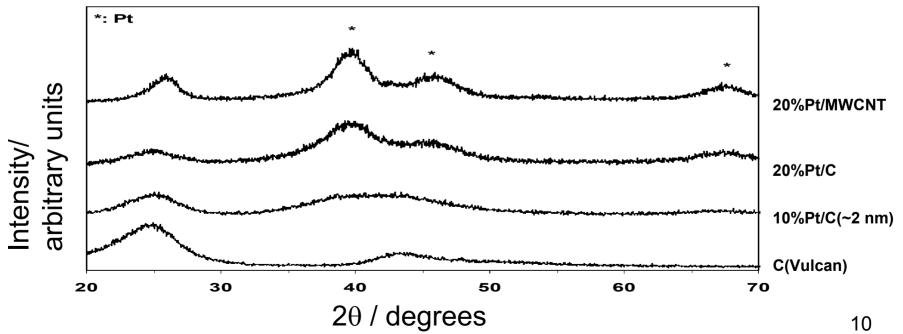
Synthesis of Highly Stable Mesoporous Carbons

- Goal: Develop and evaluate new classes of alternative and durable high-performance cathode supports
- synthesis of ordered mesoporous carbon catalyst supports
- synthesis of carbon-supported WC .

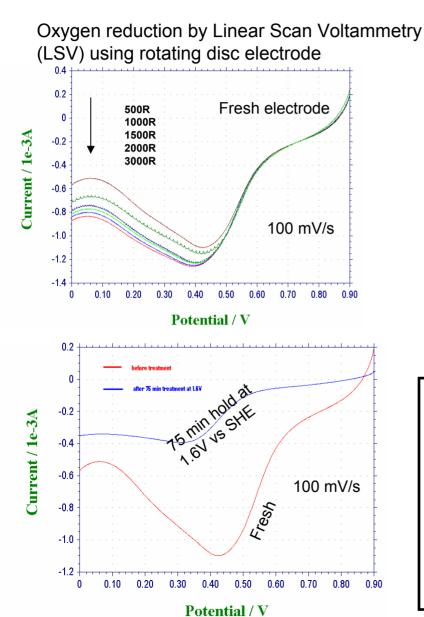
Accomplishments:


- Synthesis Established the protocol for synthesis of highly stable mesoporous carbons retaining porosities under graphitization conditions.
- *Processing* –Mesoporous carbons were used to disperse conducting oxide materials.

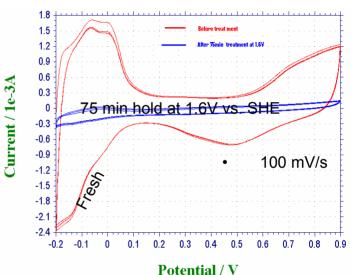
Preliminary TGA Corrosion Tests of Graphitized Ordered Mesoporous Carbon (OMC) Loaded with Pt



Pt Loading by Incipient Wetness



10%Pt/Carbon(Vulcan X72C)


20%Pt/MWCNT

Durability Testing of Cathode Catalyst

ECSA by H2 desorption

- All potentials shown are vs. Ag/AgCI
- Gold RDE, Pt wire counter, 0.5M H2SO4
- Determine ECSA and oxygen reduction current of fresh electrode
- Scan from 0.6-1.1V vs SHE for 300 cycles at 100 mV/sec
- No ECSA loss and no decrease in oxygen reduction current (data not shown)
- Hold at 1.6V vs SHE for 75 minutes
- Significant ECSA loss and decrease
 11
 in oxygen reduction current

Future Work

FY07

- Continue development of MWCNTs and mesoporous carbon support coated with WC, oxycarbides and conductive metal oxides
- Continue development of Pt supported on above materials
 - Develop fundamental understanding of interfacial interaction between Pt/C and Pt/WC by STM
 - In-Situ XPS and electrochemical measurements to determine stability
- Continue electrochemical evaluation of support and supported catalyst
 - Chronoamperometric measurement of oxidation current during hold at various oxidation potentials
 - Periodic determination of ECSA loss and decrease in oxygen reduction current
- FY08
- Identify lead cathode compositions which have high potential for achieving better durability than carbon black supported Pt cathode

Summary

- Synthesized Pt/WC and ordered mesoporous carbon supports
- Developing fundamental understanding of interfacial interaction between Pt/C and Pt/WC by STM ongoing
- Conducted *in situ* XPS and electrochemical measurements to determine stability
- Loaded Pt on mesoporous carbon and commercial supports by incipient wetness
- Started electrochemical testing of supported catalysts to determine performance and stability