

Improved, Low-Cost, Durable Fuel Cell Membranes

2007 Hydrogen Program Annual Review

<u>S. Gaboury</u>, M. Foure, J. Goldbach, D. Mountz, J. Yi, T. Zhang (Arkema) J. E. McGrath (VPI) K. More (ORNL)

Arkema, Inc. May 17, 2007

Project ID#: FCP31

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Proposed Timeline

- Start Date: July 2007
- End Date: July 2010

Budget

- Total Funding
 - DOE: \$6,278K
 - Partners: \$1,569K

Barriers & 2010 Targets

- Cost
 - \$20/m²
- Durability
 - 5000 hrs (cycling)

Partners

- Arkema:
 - Virginia Polytechnic Institute
 - Oak Ridge National Laboratory
- Johnson Matthey Fuel Cells
- University of Hawaii

Objectives

Overall

- Develop a membrane capable of operating at temperatures up to 120°C and ultra-low relative humidity of inlet gases, per DOE targets. A clear road map to attain this goal based on previously developed PVDF/polyelectrolyte blend technology has been devised.
- Optimize an MEA based on this new membrane that allows full durability characterization under DOE targets conditions.
- Elucidate ionomer and membrane failure and degradation mechanisms via *ex-situ* and *in-situ* accelerated testing. Develop mitigation strategies for any identified degradation mechanism.

Arkema's Approach

Polymer blend system to decouple H⁺ conductivity from other requirements

- Kynar[®] PVDF
 - Engineering thermoplastic
 - High chemical resistance
 - High electrochemical stability
 - Provide mechanical support
- Polyelectrolyte
 - H⁺ conduction
 - Physical properties unimportant
- Robust blending process
 - Applicable for various polyelectrolytes
 - Capable of morphology and physical property control
- Lower cost approach compared to PFSA
 - Kynar[®] PVDF commercial product
 - Polyelectrolyte hydrocarbon based
- Feasibility demonstrated (M31 & M41)

Membrane

Proposed Project Flow

	I. Polyelectrolyte	II. Membrane	III. MEA &	IV. Large Cell
	Development	Development	Fuel Cell Testing	Validation
Low RH / High Temp Membrane	 Identify critical go/no go criteria for polyelectrolyte Prepare and test various polyeletrolyte candidates Down select polyelectrolyte for membrane evaluations Arkema & VPI 	 Identify critical ex-situ go/no go criteria for membranes Develop various membrane compositions based on down selected PE and characterize membranes, including morphology Down select membranes for MEA development Arkema & ORNL 	 Identify critical <i>in-situ</i> go/no go criteria, per DOE targets Develop MEAs optimized for running new membrane under DOE conditions Conduct EOL testing and accelerated durability Arkema & Johnson Matthey 	 Develop testing protocols Fabricate large 5 & 7 layer MEAs Conduct large scale cell testing including BOL & EOL diagnostics Arkema, Johnson Matthey & U. of HI

I. Polyelectrolyte Development

Another possible structure class to be evaluated: Poly(arylene Ether Sulfone)s

- High thermal stability
- Good stability against acid, bases and oxidants
- Good mechanical properties
- Film-forming, high-performance thermoplastics
- Melt processible
- Several monomers are commercially available

Wang, S. and McGrath, J.E. In: *Polyarylene Ethers: A review*, In: *Step Polymerization*, Rogers, M. and Long, T.E., Eds., Wiley, **2003**

Tailoring of Poly(arylene Ether Sulfone)s

X = O, S

II. Membrane Development Polyelectrolyte Conductivity (mS/cm) Model materials Phase Separated 90-120 • P(AMPS) 50-90 Sulfonated Polystyrene μm 20 - 40 mS/cm Proprietary polyelectrolytes Generation A (M31) 120-150 Compatibilized Generation B 120-140 Generation C 60-120 120 - 140 Generation D (M41) 1 μm Kynar[®] PVDF blending process is generally >100 mS/cm applicable for highly protogenic polymers

ARKema

M41 Physical Properties

	Nafion [®] 111	M41
Dry Thickness (µm)	25	25
Equivalent Weight	1100	800
Density (g/cm ³)	1.8	1.5
Water Uptake (%)	37	60
X,Y Swell (%)	15	20
Thickness Swell (%)	14	10-15
Tensile Stress Break (MPa)	19	27
Elongation (%)	103	95
Tear Strength(lb _f /in)	404	934
Tear Propagation (Ib _f)	0.004	0.018

• M41 shows equal/better mechanical properties than Nafion[®] 111

M41 Transport Properties

• Equivalent proton Conductivity compared to Nafion[®]

Proton Conductivity	M41	130		
(mS/cm)*	M41 (process optimized)		150	
	Nafion		1	62

Superior gas barrier properties than Nafion[®] membranes

* by 4-point in-plane AC measurements in water at 70°C

** by electrochemical method at 80°C with 100% RH

Ex-situ Membrane Chemical Stability

M41 shows less than 1% sulfur loss over 2000hr

Morphology Characterization: M31 TEM (ORNL)

~300 nm-wide striations

Possible water diffusion pathways

Morphology Characterization: M41 TEM (ORNL)

M41 (early development stage)

M41 (pilot membrane)

 High-resolution TEM characterization to gain understanding of structure and property

III. MEA & Fuel Cell Testing: M41 Beginning of Life Performance

M41 OCV Durability: Hydrogen Crossover

- Nafion[®] 111IP membranes failed at 100 –150 hrs
- M41 membranes exhibit superior chemical stability in fuel cells

M41 OCV Durability: Effluent Water Analysis

• M41 shows significantly lower fluoride release rates and similar sulfate release rates to Nafion[®] 111 membranes

M41 High Temperature Excursion Stability

ARKema

Future Work

- This program is scheduled to begin 2Q2007
- Work for balance of FY07 and FY08
 - Develop new generation polyelectrolytes (Arkema & VPI)
 - Identify key target polyelectrolytes
 - Begin synthesis and *ex-situ* stability of new polyelectrolytes
 - Down select first candidates to carry into membrane development
 - Membrane development (Arkema)
 - Begin blending studies with down selected polyelectrolytes
 - Conduct *ex-situ* membrane testing to DOE targets
 - High-resolution morphology characterization for structure-property understanding (ORNL & Arkema)

Summary

- Arkema has developed a Kynar/polyelectrolyte blending technology capable of incorporating a wide variety of polyelectrolyte chemistries for producing fuel cell membranes
- An iterative process has been developed and used successfully to down select materials at early stages to speed the development cycle
- The latest membrane generation developed (M41) has demonstrated:
 - Equivalent fuel cell performance to Nafion[®] membranes
 - Better mechanical properties
 - Lower gas permeability
 - At least 4x increase in OCV durability versus Nafion[®] 111
- The technology and approaches already developed are fully applicable to the development of new membrane families with further improved performance at higher temperatures and lower relative humidities

