

Low-cost Co-Production of Hydrogen and Electricity

Jim McElroy Bloom Energy Corporation May 15, 2007

Project ID #FCP 37

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Contract signed: Nov. 13, 2006
- Contract end date: May 31, 2009
- To date: 20% complete

Budget

- Total project funding \$4,973,601
- FY 2006 funding: nil
- FY 2007 funding: \$2.48M*
 - 50/50 cost share

Barriers addressed

- Distributed hydrogen production from natural gas
 - A. Reformer capital costs
 - B. Reformer Manufacturing
 - C. Operation & Maintenance
- Fuel Cells
 - A. Durability
 - B. Cost
 - C. Performance

Partners

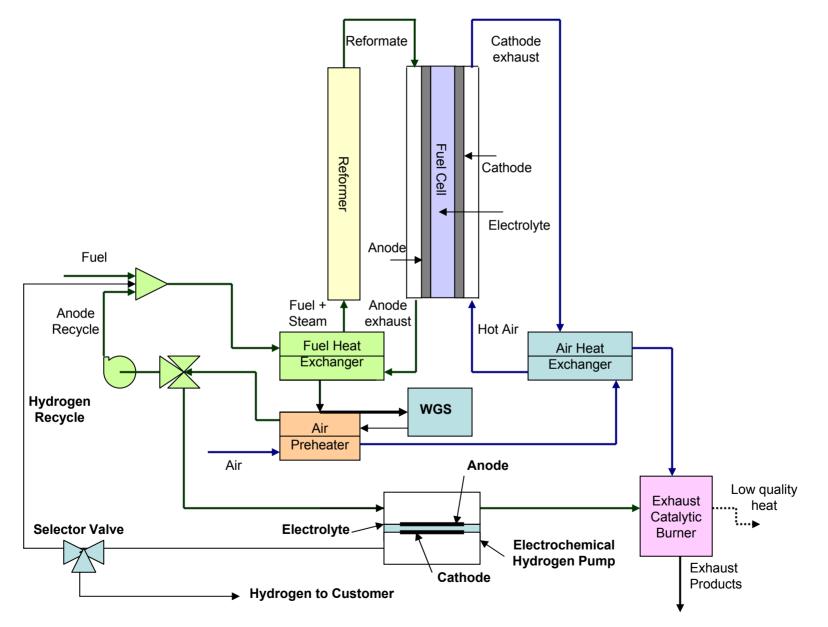
- Commercial site for Alaska
 demonstration
- Univ. of Alaska, Fairbanks for performance validation
- Planar SOFC system and project management by Bloom Energy

Objectives

Overall	 Demonstrate cost-effective, efficient, reliable and durable solid oxide fuel cells for stationary applications Determine the feasibility of a delivered cost of hydrogen below \$2.50 per gge 		
	 Determine the economics of hydrogen and electricity co-production for comparison to stand alone hydrogen production facilities 		
2006 closed items	 Selection of commercial demonstration partner - interested in both stand-alone energy generation and use of delivered, cost effective hydrogen to fuel their fleet vehicles Identification of hydrogen production solutions 		
 Site selection, site design, site construction Planar solid oxide fuel cell (PSOFC) system build Down selection of hydrogen production system Hydrogen production system build, test & optimization Combined PSOFC & hydrogen production systems in-lab to PSOFC system readiness for 2008 field demonstration star 			

Approach

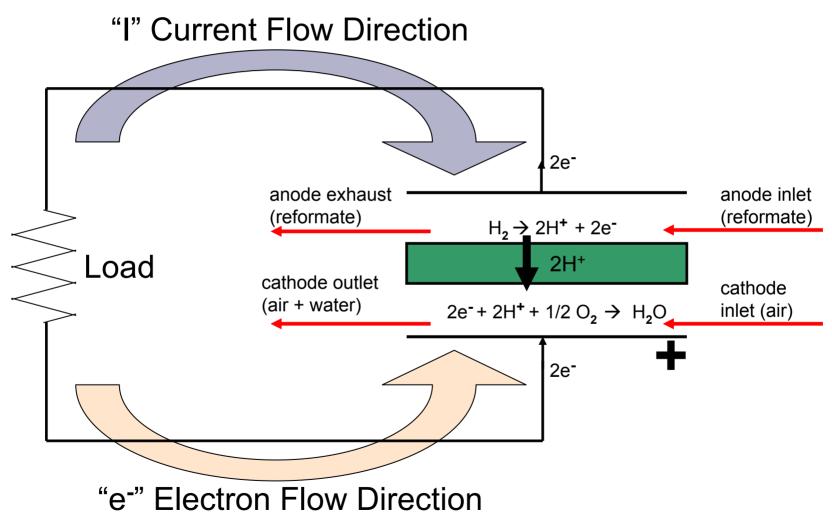
- Build and test a planar solid oxide fuel cell electricity generating facility that runs on natural gas
- Evaluate hydrogen production systems; select one for insystem, on-site demonstration; procure, test & integrate
- Commercial customer site demonstration of PSOFC technology for co-production of electricity and hydrogen
- Performance validation by independent, third party (University of Alaska, Fairbanks)


Technical Accomplishments/ Progress/Results

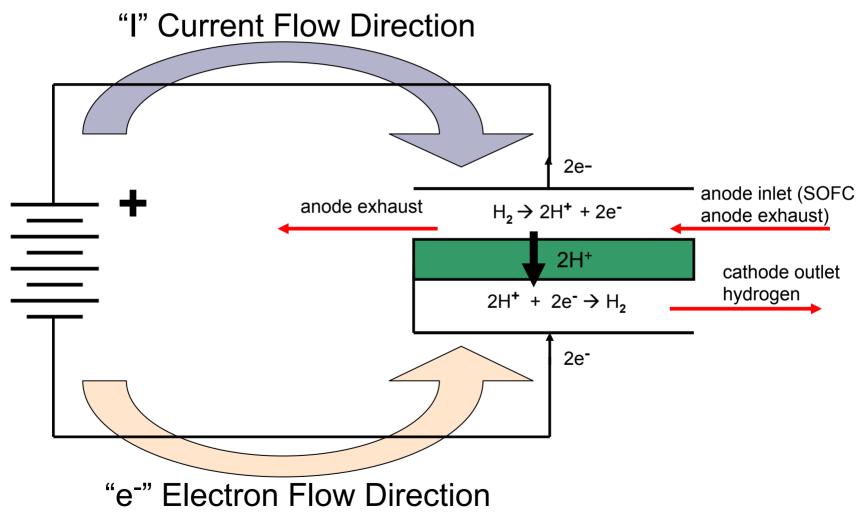
- 2006: Core technology demonstrated at Univ. of TN at Chattanooga
 - >8000 system hours logged at UTC as of 4/6/07
- Q1 2007: Alaska site visit exposes unique systems & site design criteria
 - Low temperature extreme of -35 deg C
 - Class 5 earthquake zone
 - "Dirty" natural gas delivery (occasionally includes liquids and sediments)
- Q1 2007: Down selection of hydrogen production solution
 - Anode exhaust hydrogen separation and recycle commercial solution chosen
 - Partial pressure swing adsorption (PPSA) R&D cycle will exceed project schedule
- Q1 2007: Hydrogen pump prototype designed, developed and delivered by a third-party supplier; testing begun

Future location of PSOFC (new enclosure to be built)

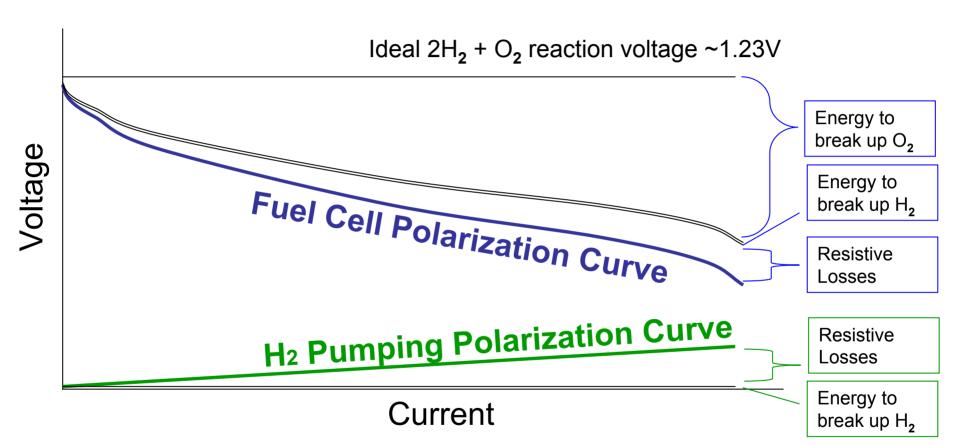
Low-Cost Co-Production of Hydrogen and Electricity PSOFC System Schematic with Hydrogen Byproduct

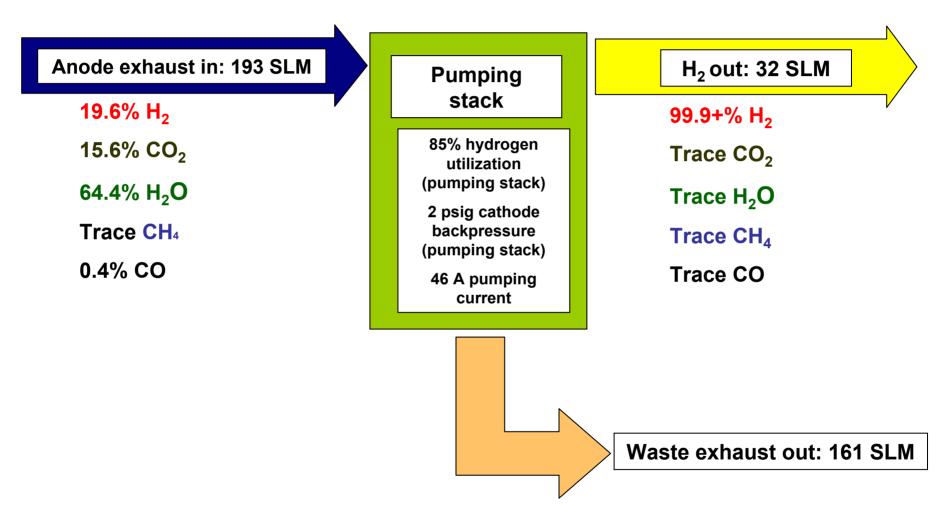


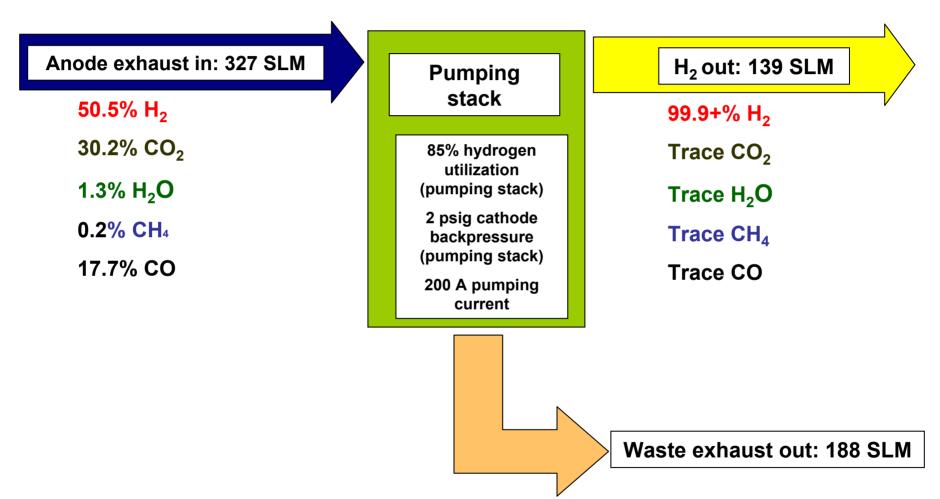
Advantages of Electrochemical Hydrogen Separation & Recycle


High overall fuel utilizationHigher cell Nernst voltage level

Higher system efficiency


PEM Fuel Cell Fundamentals


PEM Hydrogen Pumping Fundamentals


PEM Hydrogen Pumping Characteristics

Alaska Project Hydrogen Pumping (Hydrogen recycled to PSOFC fuel inlet)

Alaska Project Hydrogen Pumping (Hydrogen delivered for use outside the PSOFC system)

Hydrogen pump prototype Purchased for test and evaluation

Future Work

- Build a PSOFC generating facility for Alaska installation
- Validate hydrogen pump prototype unit
 - Stand alone *and* integrated into PSOFC system
- Procure hydrogen pump production unit for Alaska installation
 Validate in stand alone mode *and* integrated into PSOFC system
- Site design, engineering and construction
- Finalize hydrogen safety plan
- 2008 system demonstration readiness
- Complete economic modeling

Summary

- Bloom Energy PSOFC technology has logged over 8000 system hours (as of 4/6/07) as part of the DOE/EERE Chattanooga Fuel Cell Demonstration Project
- An engaged commercial demonstration partner and a technically challenging site in Alaska has been selected
- Down selected hydrogen production solution: will progress with a hydrogen pump
- At 20% complete, this project is on budget and on schedule

Additional Slides

History of Hydrogen Pumping

1962-66	Hydrogen pumping observed as a fuel cell failure mode during Gemini program.	
1972	Hydrogen expansion cell (reversed hydrogen pumping) demonstrated (energy recovery and flow control).	
1973	Proposal to NASA to use hydrogen pump to separate H_2 from N_2 + H_2 mix.	
1980-82	First product use. NASA / Air Force. Hydrogen pump to keep H_2 bubble away from water inlet side of electrolyzer. (Operated thousands of hours without failure.)	

History of Hydrogen Pumping (continued)

1980	GE paper on uses of hydrogen pumping (separation including natural gas).	
1985-90	NASA. Zero gravity phase separator. Hydrogen pump to remove H_2 from H_2 -saturated water. ~3000 hours operation.	
1995	NASA. CH_4+O_2 production on Mars. Process using hydrogen pumping to remove H_2 from $CH_4+H_2O+H_2$ stream. ~1000 hours operation.	
2002	Fuel cell anode exhaust hydrogen separation and compression to 100 psig differential (100 cell stack demonstrated for over one year without detectable degradation).	

PEM History With High Differential Pressure

Date	Application	Membrane Differential Pressure	Endurance Run
Early 70's	NASA O ₂ compressor	2950 psi; one cell test with 5000 psi D/P	
Early 70's	Aircraft O ₂ generator	350 psi D/P	
Early 70's	Military space – energy storage regenerative fuel cells	550 psi D/P	
Early 70's	Navy electrolyzer (basis of Proton Energy product kick-off)	200-400 psi D/P	>100 mm cell hrs>40,000 stack hrs
Late 80's / Early 90's	Rocket propellant generator	1000 psi D/P	
Mid 90's	Virginia-class submarine O ₂ generator	750 psi D/P; one stack test with 1000 psi D/P	>25,000 stack hrs
Late 90's	Aircraft O ₂ generator	2000 psi D/P	>20,000 stack hrs