

Kettering University Fuel Cell Project

Susanta K. Das and K. Joel Berry

Center for Fuel Cell Systems and Powertrain Integrations Kettering University May 15, 2007

Project ID # FCP4

Overview

Objectives

Overall	 Development of Novel Proton Exchange Membranes (PEM) for Fuel Cells Development of CFD porous flow model for PEM fuel cells for improved water and thermal management 			
2006	 Low-cost, high-performance membrane Design and Manufacturing Processes Experimental Testing and Performance Validation 			
2007-2008	 Low-cost, high-performance membrane Real-time membrane testing for single cell and stack Real-time testing for stability and materials properties Integrated multiphase CFD model for PEM Fuel Cell Complete unit fuel cell performance evaluation Performance evaluation for fuel cell stack 			

Approach

- Developing graphical user interface

Approach

Approach Overview

• We used novel patented polymer Chain modification process through chemical treatment onto an inexpensive robust polymer backbone

• Comparison of membrane quantities

Membrane Type	Maximum protons transfer capacity (moles/min.)	Average protons transfer capacity (moles/min.)	Induction time (min.) (start of proton transfer)	Resistance (ohm-cm ⁻²)
Nafion 212	1.0515	1.03538	99.931	0.012707
SAS type I	1.8140	1.81175	15.534	0.007261
SAS type II	1.7174	1.71080	30.042	0.007690

- 80% higher proton transfer rate than Nafion 212
- 50% less membrane resistance than Nafion 212
- Less induction time than peer

• Experimental test is in progress. We will present this result during poster presentation

• Experimental test is in progress. We will present this result during poster presentation

• Experimental test is in progress. We will present this result during poster presentation

Future Work

- Future Work (FY07-FY08)
 - Performance improvement of SAS membrane
 - Apply cross-linking agent to make membrane chemically inert towards reactant gases
 - Test thermal effect and life-cycle sensitivity
 - Map membrane water history
 - Development of integrated CFD porous media multiphase model
 - FEA graphical user interface for unit PEM fuel cell and stack
 - Effect of flow, heat transfer and electrochemistry on fuel cell performance
 - Improve design of single cell and stack
 - Develop 3D surface map for effective control of fuel cell systems

Future Work

• Future Work (FY07-FY08)

- Replace sulfate group with phosphate group for better water management
- Real-time test of membrane performance with single cell and stack
- Membrane properties calculations and validation with peers
- Improve design of unit cell and stack based on CFD modeling results
 - Perform parametric study for design sensitivity analysis
 - Calculation of optimal combination of operating conditions based on CFD surface map
 - Identify water production and management precursors
 - Identify self-humidifying mechanism for effective fuel cells water management

Summary

Project Summary

- Relevance: Help to develop advanced membrane materials for fuel cell applications
- Approach: Using patented polymer structure modification technology, develop and experimentally characterize new membrane properties and validated with peers
- Technical Accomplishments and Progress: Advanced fuel cell membrane manufacturing procedure has been developed. Mathematical formulation for CFD multiphase porous media flow model is completed

Technology Transfer/Collaborations: Active partnership with Bei-Tech, Unicore fuel cell, presentations, publication and patents

Proposed Future Research: Seek answers by identifying factors limiting PEM fuel cell performance

Additional Slides 1

Additional Slides 2

