Complex Coolant Fluid for PEM Fuel Cell Systems

Satish C. Mohapatra

Advanced Fluid Technologies, Inc. dba Dynalene Heat Transfer Fluids 05-15-2007

Project ID # FCP 6

Overview

Timeline

For SBIR Phase I & II Project

Project start date: 07-14-2004 (Phase I)

Project end date: 07-12-2007

Percent complete: 83% (Phase II)

Budget

- Total project funding
 - DOE share: \$847K (Phase | & ||)
 - Contractor share: \$100K (to Lehigh Univ.)
- Funding received in FY06: \$415K (Phase II)
- Funding for FY07: \$242K (expected)

Barriers

- Barriers addressed
 - System thermal management

Partners

Interactions/ collaborations:

Lehigh University (Subcontractor)
Penn State University (Subcontractor)
Plug Power (Supporting Activities)

Objectives

Overall

To develop and validate a fuel cell coolant based on glycol/water mixtures and an additive package (with corrosion inhibitors and nanoparticles) that will exhibit less than 2.0 μ S/cm of electrical conductivity for more than 3000 hours in an actual PEM Fuel Cell System. Demonstrate the potential for commercializing such a coolant at a price that is acceptable for a majority of fuel cell applications (i.e., < \$8.0/gallon).

2006

Optimize nanoparticle chemistry (size, surface charge, stability) Optimize corrosion inhibitors (type, concentration, combination) Long-term tests (1000 hours tests)

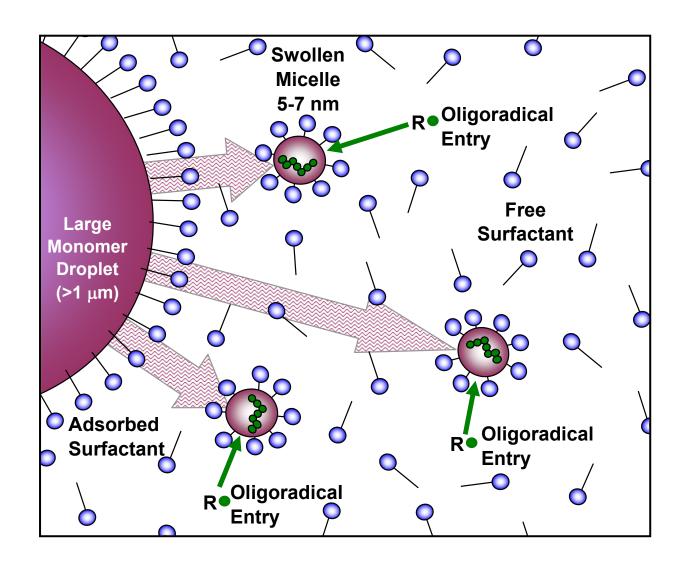
2007

Optimize nanoparticle chemistry (dispersion and thermal stability) Long-term tests (3000 hours) Tests in Real Fuel Cells (3000 hours)

Key Technical and Economic Questions to be Answered

- How is the electrical conductivity of the coolant related to the properties of the additives?
- Will the additives influence the heat transfer and pressure drop characteristics of the coolant?
- Is the coolant and its additives compatible with the fuel cell cooling system components?
- What is the raw material and production cost for the proposed 'Complex Coolant Fluid'?

Approach


- The proposed Complex Coolant Fluid consists of a base compound (glycol/water mixtures) and an additive package.
- The base compound mixture has a freezing point less than –40°C, is non-flammable, and can be used at temperatures up to 122°C.
- The additive package consists of non-ionic corrosion inhibitors and ion-suppressing compounds (ion-exchange nanoparticles) to maintain the electrical conductivity of the coolant at a low level.

Technical Approach in Phase I

- Development of the nanoparticles by emulsion polymerization
 - Effect of preparation recipe on the electrical conductivity of the final coolant formulation
 - Study dispersion behavior in the coolant

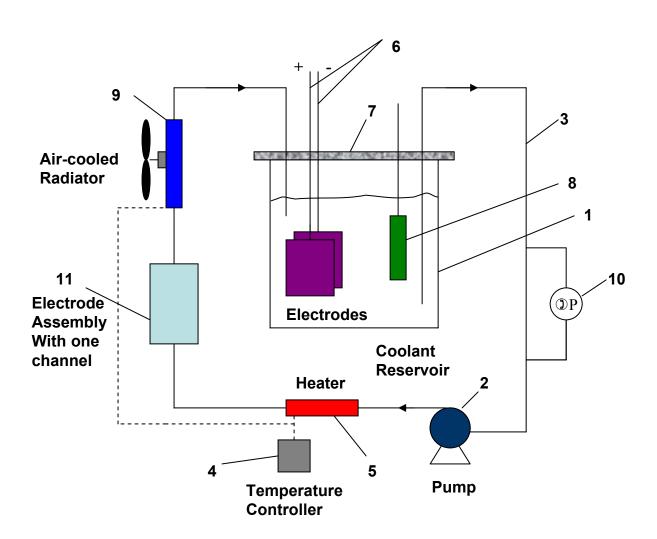
- Building a dynamic test loop (4 L)
 - Short-term and long-term tests (electrical cond. vs. time and pH vs. time)

Emulsion Polymerization

Technical Approach in Phase II

Optimization of the ion-exchange nanoparticles

- Effect of preparation recipe on the particle size, surface charge and dispersion behavior
- Study dispersion behavior in the final coolant formulation


Short-term and long-term tests

Electrical conductivity and pH vs. time

Characterization of Nanoparticles

- Conversion
 - Gravimetric Analysis
- Particle Size
 - Dynamic Light Scattering (Nicomp)
 - Capillary Hydrodynamic Fractionation
 - TEM
- Cleaning
 - Serum replacement
 - Ion exchange resin (mixed bed)
- Surface Charge Density
 - Conductometric titration

Dynamic Test Loop for Coolant Testing

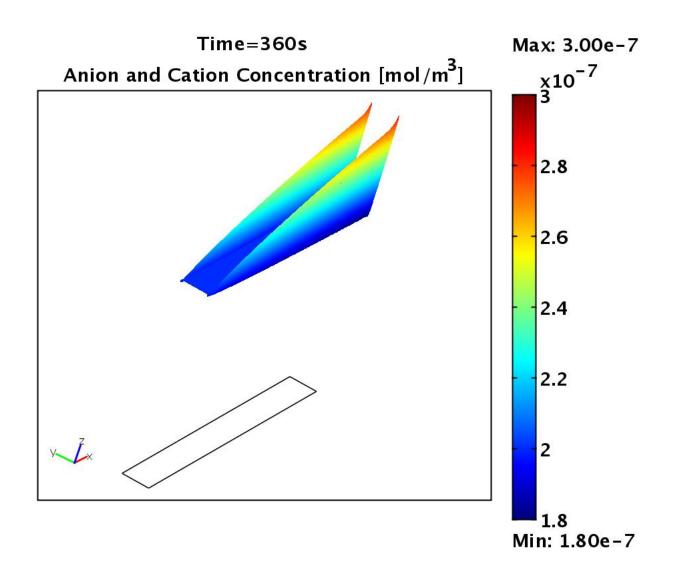
- 1: Reservoir
- 2: Pump
- 3: Piping
- 4: Temp. Controller
- 5: Heater
- 6: Electrodes
- 7: Reservoir Head
- 8: Probes
- 9: Radiator
- 10: Diff. Pressure Gauge
- 11: Electrode assembly

Dynamic Test Loop for Coolant Testing

Simulation of one channel electrode assembly

pH probe

Heater


Reservoir for the coolant

Cond. probe

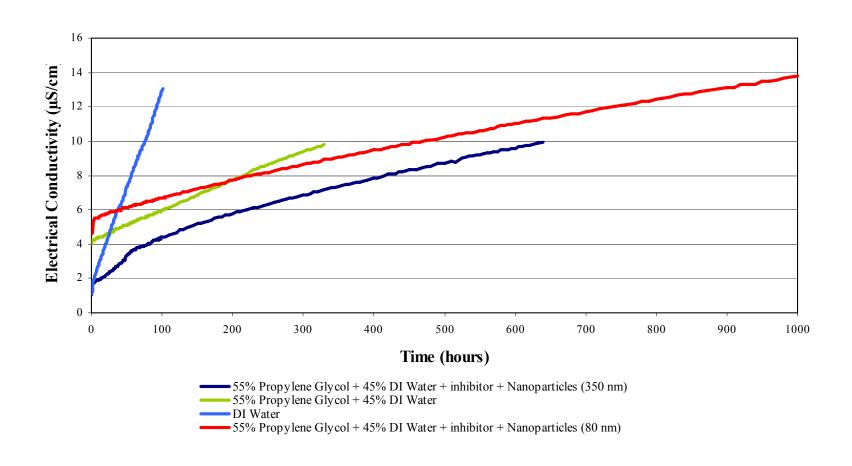
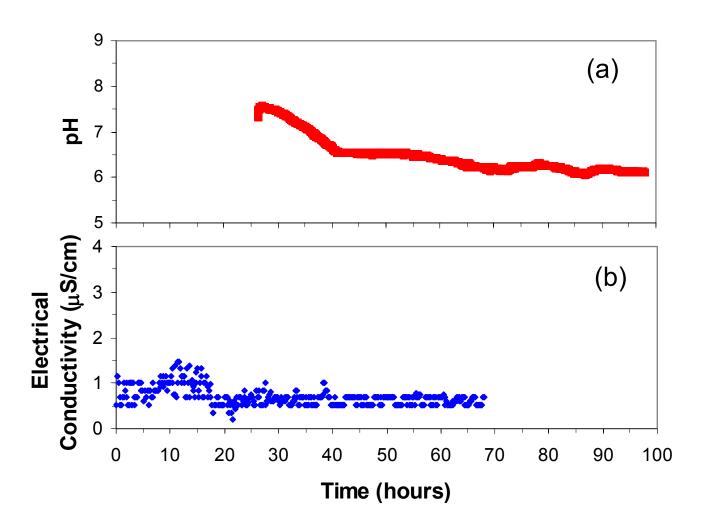

Radiator

Table 1: Particle size and surface charge for both anionic and cationic nanoparticles


Nanoparticles	Average Size (nm)	Surface Charge by Titration (μeq/g)
ANPS 30403	80	454
CATPS 60211		743
CATPS 6	350	956
ANPS 6		28

Particle deposition on channel walls due to electrostatic attraction

Electrical conductivity of coolant formulations as a function of time in the 4 L dynamic test system at 70 °C

(a) pH and (b) electrical conductivity of an optimized coolant formulations as a function of time in the dynamic test system

Discussion and Conclusions

- Uniform particle size distribution of the nanoparticles has been obtained by optimizing the recipe.
- High surface charge density (> 700 μ eq./g) can be obtained with cationic particles. More optimization needed for anionic particles.
- Coolant formulations with non-ionic corrosion inhibitor and nanoparticles have lower rate of increase in electrical conductivity than DI water, glycol/water, and glycol/water/inhibitor mixtures.

Future Work

- In 2007, the nanoparticles will be optimized further to reduce coagulation
- Electrodeposition rate of additives on the electrode surfaces will be determined experimentally
- Material compatibility tests will be carried out
- Optimized coolant will be tested in real fuel cell systems
- Cost of the coolant will be evaluated

Acknowledgements

- Daniel Loikits (Program Manager), Magaly Quesada, Steve Fermato, Jeremy Mock and Dr. Mingzhang Wang.
- Su Han, Dr. Eric Daniels, Dr. Victoria Dimonie, Dr. David Sudol, and Prof. Andrew Klein (All from Lehigh University)
- Dr. Jiangtao Cheng, Prof. Matthew Mench, and Prof. Kendra Sharp (Penn State University)
- US Dept. of Energy (SBIR Phase I and II Grant)