

Combinatorial Method for Developing Cathode Catalysts for Fuel Cells

Keith D. Kepler Farasis Energy, Inc. 5-15-07

This presentation does not contain any proprietary or confidential information

Project ID: #FCP7

Overview

Timeline

- Start Date: October, 2004
- End Date: May, 2007
- 98% Completed

Budget

- Phase II SBIR
- Total Project Funding
 - \$750,000
- 2006 Funding: \$246,000
- 2007 Budget: \$15,000

Barriers

- Low activity of non-Pt catalysts
 - 2004 Status: 8 A/cm³
 - 2010 Target: >130 A/cm³

Partners

• Illinois Institute of Technology

Need for New Fuel Cell Cathode Catalyst

Automotive Applications:

- Order of magnitude improvement over current Pt alloy based MEA's.
- Cost \$10/kW MEA Cost
- High Efficiency 0.2 g/peak kW total anode/cathode loading.
- Long Life 10-15 years life

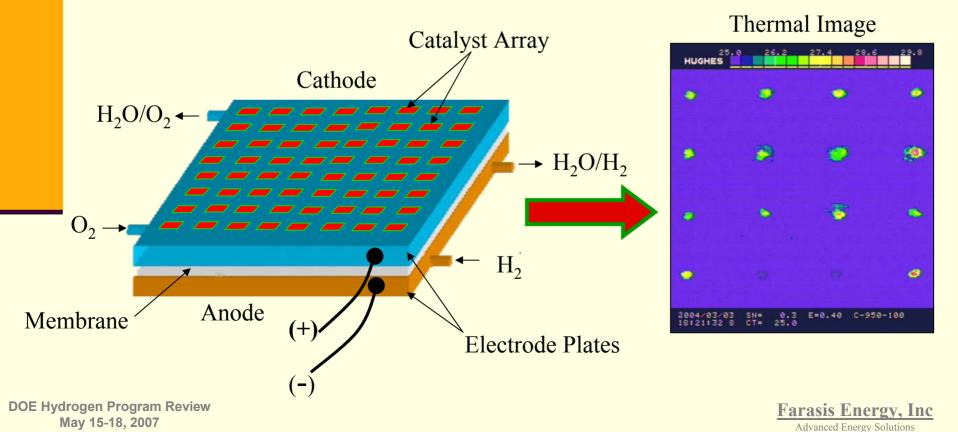
Project Objectives

- Develop a controlled method for accurate high-throughput evaluation of new catalyst materials.
- Scale up combinatorial approach: Sample preparation, screening system and data processing.
- Evaluate several families of catalysts for oxygen reduction activity.
- Scale up new, low-cost high-activity catalysts for evaluation in fuel cells.
- Develop instrument for efficient evaluation of multiple fuel cell components (catalysts, membranes, MEA's, etc) for general use in process development and manufacturing quality control.

Why Combinatorial Approach for Catalyst Development?

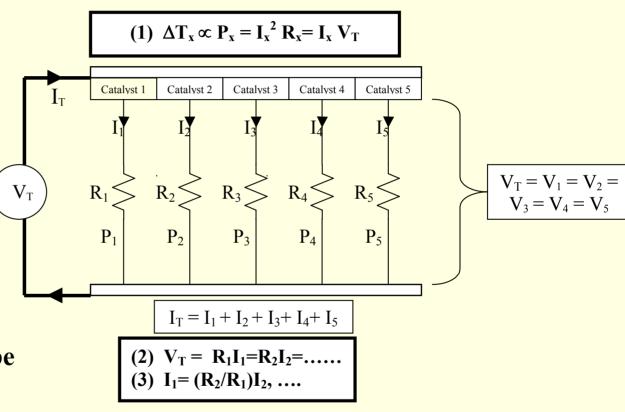
- Barriers to rational design.
 - Complex surface chemistry.
 - Lack of a complete understanding of the reaction processes involved.
- Many possible catalyst permutations (not confined by equilibrium phases).
- Screening in parallel allows for better evaluation of relative performance.
- Can potentially greatly reduce the cost of optimization and accelerate the discovery of new catalysts.

Phase II Project Catalyst Development Strategy


- Identify best chemistry first then optimize for utilization.
- Control all critical parameters to determine inherent catalyst activity.
- Use systematic DOE techniques to design catalyst array compositions and testing condition variables.

Technical Approach

Thermal Sensing


Thermal sensing allows for *in situ* monitoring of individual catalysts samples in a closed fuel cell system.

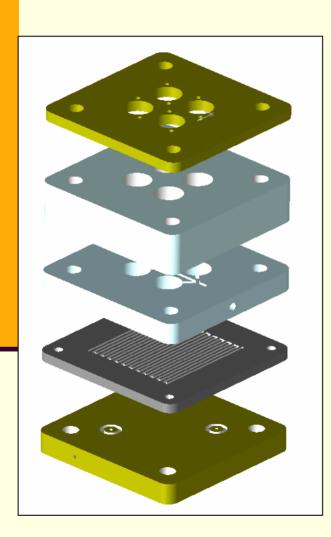
Heat Generation and Catalyst Efficiency

- Correlation between i²R heat generated and current density.
- The best catalyst will generate the most heat.
- The current passing through each sample can be determined from dT.

Platinum/0.2V $\sim 10^{-3}$ W/cm² Carbon/0.2V $\sim 10^{-6}$ W/cm²

Technical Approach Advantages

- *In situ* screening under real operating conditions.
- Good control of critical parameters that affect performance.
- Great flexibility to screen any catalyst type for any fuel cell system.
- Simple, low-cost system scale-up.



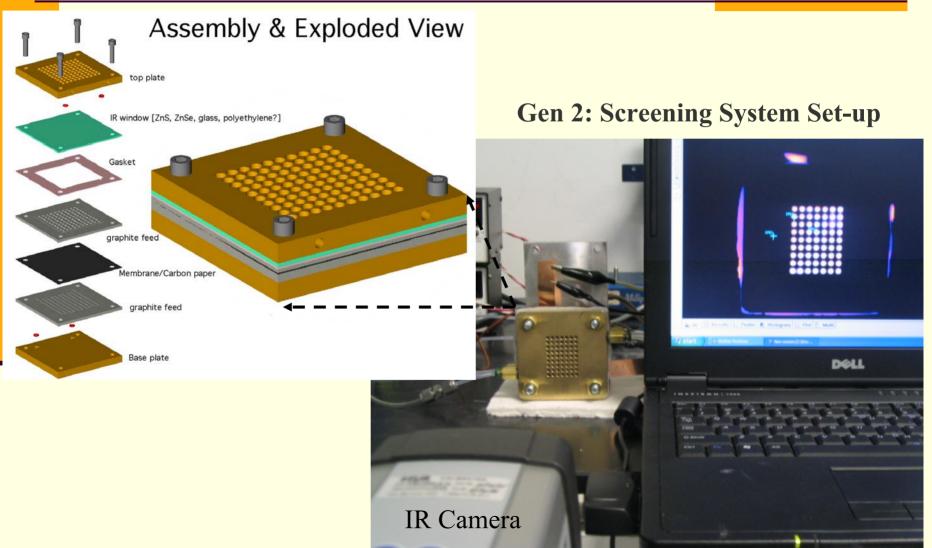
Technical Accomplishments/ Progress/Results

- Further development of Gen 1 screening system design.
- DMFC version tested.
- New Gen 1 sample preparation methods.
- Prototype Gen 2 screening system developed.
- **Exploration of catalyst families using Gen 1 system.**
- Detailed characterization of Pd-X catalyst systems.

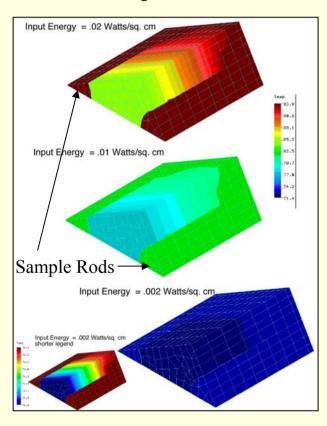
Gen 1 Fuel Cell System: Multiple Sample Rods

Design Innovations:

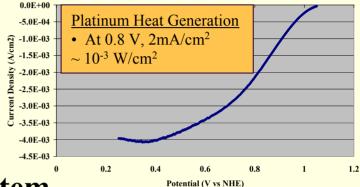
- •Sample rods inserted from top side of fuel cell with cell already assembled.
- •Compressed spring provides uniform contact pressure.
- Porous carbon tip and 3-D fuel flow through rod provides uniform fuel spring distribution to catalysts.
- •Air gap minimizes heat transfer between samples.
- •Catalyst prepared on small porous carbon disk.


Sample Rod

Gen 2 Fuel Cell System: Single Sample Array

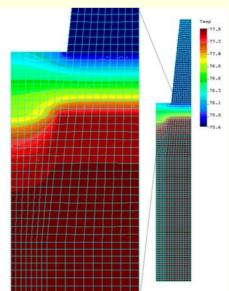

Farasis Energy, Inc

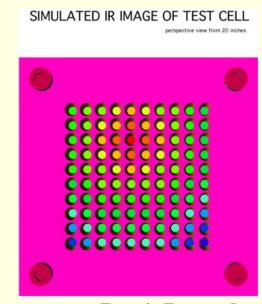
Advanced Energy Solutions



Thermal Modeling to Aid System Design

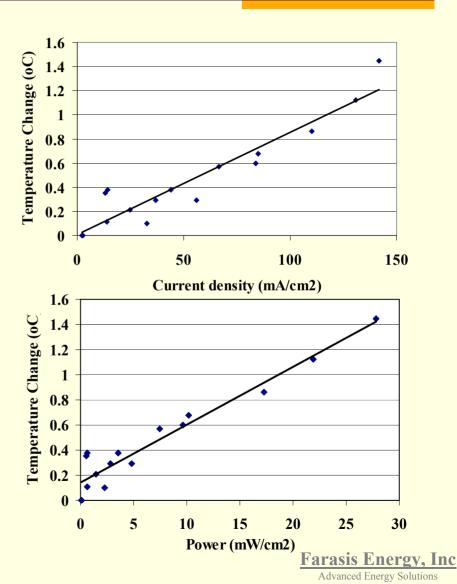
Gen 1 System Sample Rod




Estimate Power Inputs for Models

Gen 2 System

Single Window

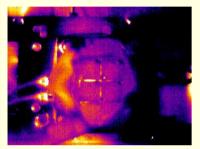


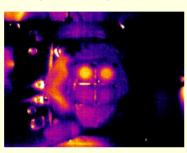
Farasis Energy, Inc
Advanced Energy Solutions

Verification of Thermal Signal Correlations

- Initial calibration of Gen 1 Fuel cell using thermal couples.
- Strong correlation between current/power density and catalyst sample temperature change.
- Sample temperature change was sufficient to detect by conventional methods.

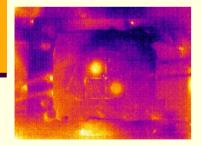
Qualifying Gen 1 System Design


- Qualify on 4-sample array apparatus before scale up.
- Qualification Procedure.
 - Demonstrate correlation between current and temperature.
 - Verify uniform fuel flow.
 - Verify uniform stack pressure.
 - Verify evaluation of constant catalyst surface area across array.
- Scale-up to 25-sample array apparatus.
- Catalyst Screening.


Gen 1 System: Thermal Signal Correlations

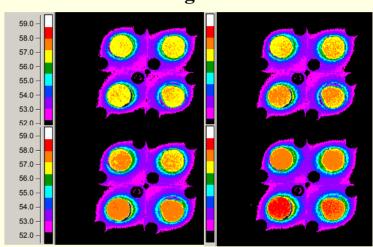
4-Sample Array – Sputter Deposition:

2x Pt (top) vs. 2x Carbon (bottom)

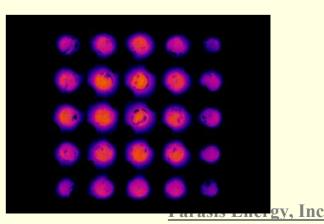


Current: 0 mA/cm²

Current: 30 mA/cm²

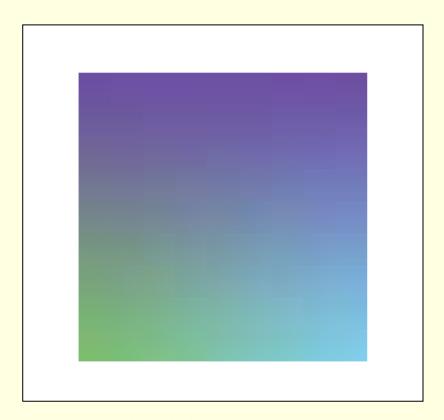

After switching right-side samples

Current: 30 mA/cm²


4-Sample Array – MEAs

Pt loading 0.1 - 0.4

25-Sample Array – Electrodeposition:

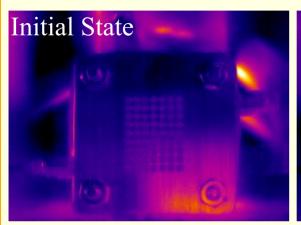

- 55 °C Operation
- H_2/O_2
- Binary alloy array
- $\Delta T \sim 2^{\circ}C$
- Hot spots-Highest current density

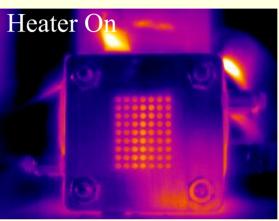
Gen 2: MEA for Combinatorial Screening

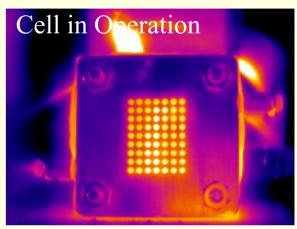
Using ink-jet technology or other methods an MEA can be prepared with a continuous compositional variation across its face (A,B,C).

A ABC

Membrane

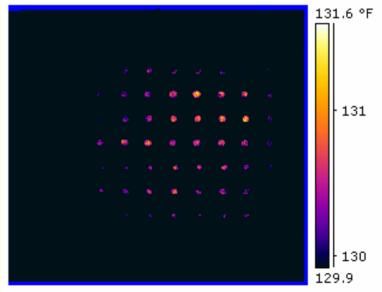

Color printing pattern


Catalyst containing electrode



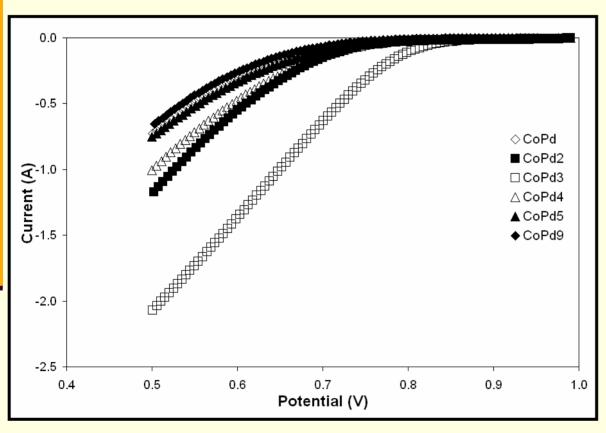
Gen 2: MEA Screening Examples

Commercial MEA (Scale -27-36 °C)



Variable composition MEA prepared at Farasis

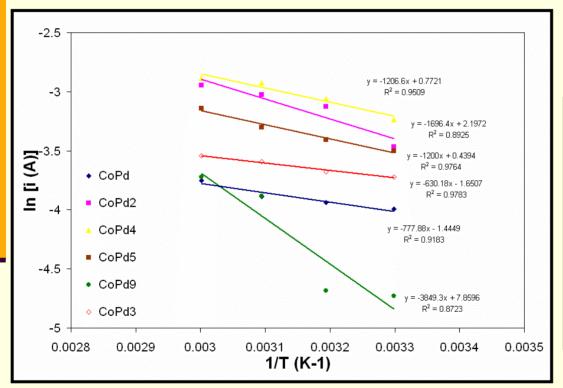
- Conditioned over 4 hours
- Current ~50 mA/cm²


Stage 2 Catalyst Development

- Best identified catalyst families are further characterized by conventional methods.
- Electrodeposited catalyst samples CV's, Rotating Disk.
- Carbon supported catalyst MEA's, H₂ fuel cell.

Co-Pd Catalyst Family with High Activity

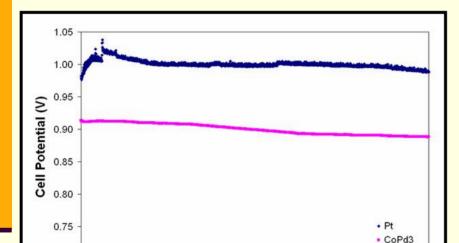
Polarization Curves for Co-Pd compositions



- Temperature: 60°C
- Cathode gas: O₂
 - Anode gas: H₂

CoPd_x Kinetic Parameters

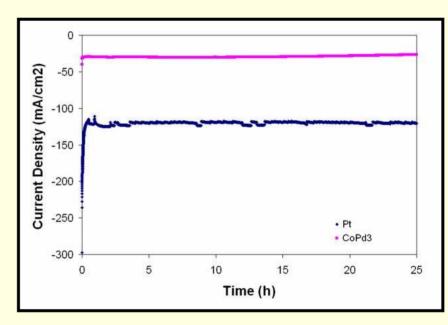
Arhenius Plots for the ORR in a 5 cm² PEMFC on CoPd_x Electrocatalysts


Calculated Kinetic Parameters for ORR on CoPd_x Electrrocatalysts in a H₂/O₂ PEMFC

Composition	Onset Potential (V)	Activation Energy (kJ/mol)	Tafel Slope, b 60°C (mV/dec)	Exp[a/b]
CoPd	0.87	80.4	96.5	4.08E+02
CoPd₂	0.88	104.0	87.1	1.23E+03
CoPda	0.92	52.4	69.6	2.69E+04
00. 3	0.02	02.1	00.0	2.002.01
CoPd₄	0.89	100.3	90.3	7.69E+02
CoPd₅	0.90	99.8	100.1	2.43E+02
CoPd₃	0.89	320.0	34.8	1.72E+08

Performance Stability of Pd₃Co in Hydrogen Fuel Cell

Open Circuit Voltage Pt and CoPd₃-cathode/ Pt-anode MEAs in a 5 cm² PEMFC at 60 °C.



15

Time (h)

20

Performance Stability of Pt and CoPd₃ cathode MEAs at 0.8 V, 60 °C.

• Some performance degradation of PdCo₃ catalyst observed.

25

0.70

5

Summary

- We have developed an easily scalable method of combinatorially screening materials for electrochemical systems based on their efficiency related thermal signature.
- We are using this system to evaluate catalysts for oxygen reduction activity.
- Materials with the greatest potential are further characterized and optimized by conventional methods.
- Our combinatorial technique and development strategy greatly increase our probability of success and decrease our discovery time.