Hydrogen Embrittlement of Pipelines: Fundamentals, Experiments, Modeling

P. Sofronis, I. M. Robertson, D. D. Johnson

University of Illinois at Urbana-Champaign

2007 DOE Hydrogen Program Review May 16, 2007

Project ID #PD13_sofronis 1

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Project start date:5/1/05
- Project end date: 30/4/09
- Percent complete: 15%

Budget

- Total project funding: 300k/yr
 - DOE share: 75%
 - Contractor share: 25%
- Funding received in FY2005
 - ≻ \$100 K
- Funding received in FY2006
 - ≻ \$80 K
 - Due to reduced funding Experiments and Ab-initio calculations were on hold
- Funding for FY2007
 - ≻ \$80 K

OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

Barriers

- Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?)
- Suitable steels, and/or coatings, or other materials to provide safe and reliable hydrogen transport and reduced capital cost
- Assessment of hydrogen compatibility of the existing natural gas pipeline system for transporting hydrogen

Partners

- Industrial (SECAT)
 - DGS Metallurgical Solutions, Inc.
 - Air Liquide
 - Air Products
 - Schott North America
- National Laboratories
 - Oak Ridge National Laboratory
 - Sandia National Laboratories
- Codes and Standards
 - > ASME

SCHOTT glass made of ideas

Objectives

- To come up with a mechanistic understanding of hydrogen embrittlement in pipeline steels in order to devise <u>fracture criteria</u> for safe and reliable pipeline operation under hydrogen pressures of at least 7MPa and loading conditions both static and cyclic (due to in-line compressors)
 - Existing natural gas network of pipeline steels
 - Propose new steel microstructures
- It is emphasized that such fracture criteria are lacking and there are no codes and standards for reliable and safe operation in the presence of hydrogen
 - Hydrogen pipelines in service operate in the absolute absence of any design criteria against hydrogen-induced failure
 - There are no criteria (codes and standards) with predictive capabilities
 - Pipeline steels are extremely and <u>dangerously</u> susceptible to fatigue failure in the presence of hydrogen

Illinois mechanism-based approach

- Develop design criteria to be used for codes and standards for safe and reliable operation
- Avoid unnecessary repairs and shut-downs by minimizing unnecessary levels of conservatism in the operation of pipelines
- Reduce capital cost by avoiding conservatism

Approach

- Tension experiments to identify macroscopic plastic flow characteristics
- Permeation experiments to identify diffusion characteristics
- Experiments (subcritical crack growth) to determine
 - The hydrogen effect on crack initiation
 - What constitutes "safe hydrogen concentrations" at Threshold Stress Intensities
 - The stability of crack propagation to assess catastrophic failure scenarios
- Identification of deformation mechanisms and potential fracture initiation sites under both static and cyclic loading conditions in the presence of hydrogen solutes
 - SEM studies of fracture surfaces in the presence of hydrogen and TEM analysis of the material microstructure
 - Our contention, which needs to be verified through experiment, is that embrittlement is a result of the synergistic action between decohesion at an inclusion/matrix interface (void nucleation) accompanied by shear localization in the ligament between the opening void and the tip of the crack
- Thermodynamics and first principles calculations for the determination of the cohesive properties of particle/matrix interfaces as affected by the presence of hydrogen solutes
- Finite element simulations of the coupled problem of material elastoplasticity and hydrogen diffusion in the neighborhood of a crack tip accounting for stress-driven diffusion and trapping of hydrogen at microstructural defects.
- Development of a mechanistic model that incorporates the fracture mechanisms to establish fracture criteria with predictive capabilities

New Steel Microstructure-Oregon Steel Mills (OSM)

API Grade	С	Mn	Si	Cu	Ni	V	Nb	Cr	Ti
X70/80	0.04	1.61	0.14	0.22	0.12	0.000	0.096	0.42	0.015

Defects in microstructure, particularly precipitates, act as trap sites for hydrogen

- High dislocation density in some regions
- Irregular grain boundaries and small grains, indicative of microstructure that has not been fully recrystallized and recovered.

Relatively low precipitate density (inside the matrix)

Particle Composition Energy Dispersive Spectroscopy

- a) EDS spectrum from particle
- **b)** Bright field TEM image of typical rectangular particle
- c) EDS spectrum from matrix
- EDS analysis of fine precipitate inside ferrite grain suggests that precipitate is composed of Ti and Nb

Steel Microstructure-Air Liquide Pipeline

Large intergranular particles (cementite)

Small intragranular particles (carbides with Nb and Ti)

Hydrogen Permeation Measurements

Hydrogen Transport Analysis

 σ_{kk} = hydrostatic stress

 V_{H} = partial molar volume of H

 ε^{p} = plastic strain

 N_{τ} = trap density

 $()_{i} = \partial()/\partial x_{i}$

$$\frac{D}{D_{eff}}\frac{dC_L}{dt} = DC_{L,ii} - \left(\frac{DV_H}{3RT}C_L\sigma_{kk,i}\right)_{,i} - \alpha\theta_T \frac{\partial N_T}{\partial\varepsilon^p}\frac{d\varepsilon^p}{dt}$$

Note the effect of stress and plastic strain

May 2007

Material Data (OSM)

Cracked Pipeline: Problem Statement

Hydrostatic Stress at Pressure 15 MPa

Plastic Strain at Pressure 15 MPa

Lattice Hydrogen Concentration at Steady State

May 2007

Transient to Steady State - Lattice Concentration

Trapped Hydrogen Concentration at Steady State

Kumnick and Johnson trapping model

Total Hydrogen Concentration at Steady State

Total Hydrogen Concentration at Steady State

Dislocation trapping model

May 2007

Fracture Mechanics Assessment

Accomplishments vs. Project Milestones and Objectives

- Design of permeation measurement system
 - Complete. Measurements are underway
- Microstructure characterization
 - Ongoing for both new and existing pipeline steels

- Macroscopic flow characteristics in uniaxial tension of new material microstructures (micro-alloyed steels)
 - Complete in the absence of hydrogen. Experiments in the presence of hydrogen are planned this summer (it depends on the funding situation)
- Development of finite element code for transient stress-driven hydrogen transport analysis coupled with large-strain elastoplastic deformation
 - Complete. Code has been tested and validated against analytical solutions and code at Los Alamos National Laboratory
- Simulation to the problem of hydrogen transport at a cracked pipeline
 - Ongoing
- Collaboration with ASME on validating the proposed safety factors to be used for the design of pipeline steels under a range of hydrogen pressures
 - Done (Hayden Liu)

Validation of ab-initio calculations for decohesion energy calculations

- Complete. Unrelaxed binding energies (eV) and their differences for H in Fe grain boundary (GB) and free surface (FS) calculated by VASP PAW-GGA and FLAPW (Zhong *et al.*, 2000)
- Continuing research in this area depends on project funding

Future Work

Experiment

- Establish the diffusion characteristics of existing and new pipeline steel microstructures
 - Existing pipeline steel samples provided by Air Liquide and Air Products. Specimens are in our laboratory
 - New micro-alloyed steels (new microstructures) provided by Oregon Steel Mills through DGS Metallurgical Solutions, Inc.

		API/ Grade	C	Mn	Si	Cu	Ni	V	Nb	Cr	Ti
X	Α	X70	0.08	1.53	0.28	0.01	0.00	0.050	0.061	0.01	0.014
►	В	X70/80	0.05	1.52	0.12	0.23	0.14	0.001	0.092	0.25	0.012
×	C	X70/80	0.04	1.61	0.14	0.22	0.12	0.000	0.096	0.42	0.015
	D	X52/60	0.03	1.14	0.18	0.24	0.14	0.001	0.084	0.16	0.014

Typical natural gas pipeline steel Ferrite/acicular ferrite Ferrite/acicular ferrite Ferrite/low level of pearlite

- Collaboration with ORNL and Schott North America for coating of our samples
- Determine uniaxial tension macroscopic flow characteristics in the presence of hydrogen
- Carry out fracture testing: Collaboration with Sandia, Livermore
- SEM and TEM studies on existing and new pipeline material microstructures
 - > Fracture surfaces, particle, dislocation, and grain boundary characterization

Modeling and Simulation

- Determine the time it takes for the hydrogen population profiles to reach steady state as a function of the crack depth.
- Complete the stress analysis to establish the dependence of the stress profiles ahead of an axial crack tip in term of the Stress Intensity Factor and the T-stress
 - > We expect strong dependence on hydrogen-induced material softening
 - Set hydrostatic constraint guidelines for testing standard fracture specimens in the presence of hydrogen

Simulate crack growth propagation in the presence of hydrogen

- > Requires cohesive laws in the presence of hydrogen
- Establish critical toughness for fracture initiation
- > Establish the tearing resistance of the material upon crack propagation
- > Explore subcritical crack growth propagation in the presence of hydrogen
- Ab-inito calculations of cohesive properties of Fe/MnS interface
 - Establish criteria for interfacial decohesion needed to assess void nucleation at Mns/Fe particles
 - Explore whether thermodynamic criteria (e.g. Hirth and Rice) are suitable to analyze hydrogen-induced decohesion at interfaces

Long Term Objective: Multiscale Fracture Approach

Future Work

Other Activities

 Finite element analysis of residual stresses of a Schott Coating sitting on the substrate

Average tensile stress $\sigma_{\!\scriptscriptstyle 11}$ in the coating is 125 MPa

Note that substrate is under large compression (-100Mpa) at the edges (possible delamination cause)

- Continue collaboration with ASME on establishing guidelines for codes and standards
- Continue our ongoing collaboration with the Japan program for materials solutions for the Hydrogen Economy
 - Hydrogen National Institute for Use and Storage (Hydrogenius)
 - Kyushu University (Prof. Y. Murakami)
- Continue our ongoing collaboration with the NATURALHY Project sponsored by the European Union
 - Interaction of hydrogen in a pipeline with a corrosion induced-crack on the external wall

Summary

Relevance

- Identify the mechanisms of hydrogen embrittlement in pipeline steels and propose fracture criteria with predictive capabilities.
- There are no codes and standards for safe and reliable pipeline operation in the presence of hydrogen

Approach

- Mechanical property testing at the micro/macro scale
- Microstructural analysis and TEM and SEM observations at the nano/micro scale
- Ab-initio calculations of hydrogen effects on cohesion at the atomic scale
- Finite element simulation at the micro/macro scale

Accomplishments and Progress

- Permeation measurements
- Study of tensile properties of new micro-alloyed steels
 - Good in H₂S sour natural gas service
- Microstructural characterization of Air Liquide, Air Products, and OMS steels
- Finite element analysis of hydrogen transport
- Validation of ab-initio calculations

Collaborations

 Active partnership with SECAT, Oak Ridge National Laboratory, Sandia National Laboratories, ASME codes and Standards, JAPAN (Hydrgenius Institute)

Proposed future research

- Permeation measurements for diffusion and solubility characteristics
- Fracture toughness testing
- Calculation of hydrogen effect on interfacial cohesion through first principles calculations
- Simulation of hydrogen transport in conjunction with fracture-mechanism modeling
- Understanding R-curve response and threshold stress intensities in the presence of hydrogen

