

Fiber-Reinforced Polymer Pipelines for Hydrogen Delivery

Barton Smith, Barbara Frame, Cliff Eberle, Larry Anovitz and Tim Armstrong

Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6054

2007 DOE Hydrogen Program Review Arlington, Virginia May 16, 2007

Project ID #: PD14

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Start: Jan 2005
- On standby in FY 2006
- Restart: Nov 2006
- Finish: Project continuation & direction determined annually by DOE

Budget

FY 2005	\$151k
FY 2006	\$17k
FY 2007	\$450k

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Barriers

- D. High Capital Cost and Hydrogen Embrittlement of pipelines
- Technical Targets: see next slide
- Partners & Collaborators
 - Fiberspar LinePipe, LLC
 - University of Tennessee, Knoxville
 - SRNL
 - Pipeline Working Group

Technical Targets

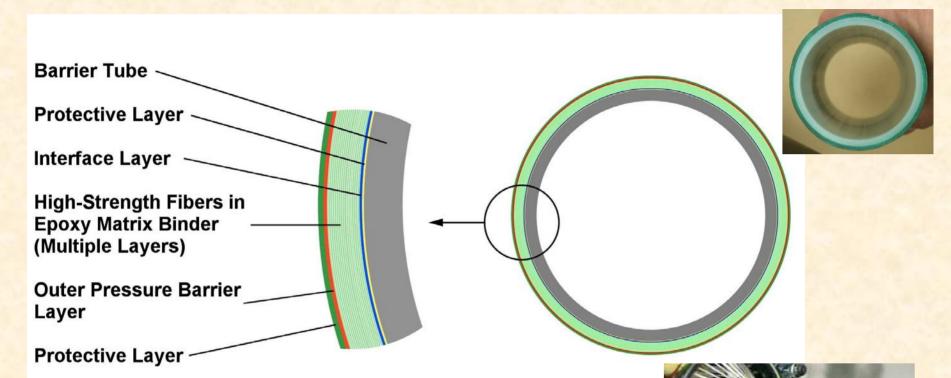
Category	2005 Status	2012	2017			
Pipelines: Transmission						
Total Capital Investment (16-in pipeline, \$/mile)	\$720k	\$600k	\$490k			
Pipelines: Distribution						
Total Capital Investment (2-inch pipeline, \$/mile)	\$320k	\$270k	\$190k			
Pipelines: Transmission and Distribution						
Reliability/Integrity (including 3rd-party damage issues)	Acceptable for current service		Acceptable for H_2 as a major energy carrier			
H ₂ Leakage	Undefined	TBD	< 0.5%			

Objectives

Overall	 2012: Reduce the cost of hydrogen transport from central and semi-central production facilities to the gate of refueling stations and other end users to <\$0.90/gge. Investigate use of fiber-reinforced polymer (FRP) pipeline technology to transmit and distribute hydrogen and achieve reduced installation costs, improved reliability, and safer operation of hydrogen pipelines.
FY 2005	 Demonstrate feasibility of FRP pipelines for hydrogen delivery Demonstrate reduced hydrogen permeability in polymer containing nanostructured composites
FY 2007	 Demonstrate integrity of FRP pipeline during hydrogen exposure Assess hydrogen leakage in existing liner materials Assess joining methods for FRP pipelines Determine integrated sensing & data transmission needs

Plan & Approach

- Task 1: Evaluate FRP pipeline 10% complete
 - H₂ exposure testing of FRP pipeline specimens and constituent materials
- Task 2: Evaluate FRP pipeline liner materials 15% complete
 - Tabulate H₂ permeabilities of pipeline liners
 - Measure H₂ permeabilities in OEM liners
 - Assess modification and treatment options
- Task 3: Evaluate FRP pipeline joining and integrated sensor technologies - 0% complete
 - Assess methods for joining during emplacement, joining FRP pipelines to other pipelines, and repairing FRP pipelines
 - Assess needs for structural health monitoring, leakage and gas property sensing
- Task 4: Support Pipeline Working Group 50% complete



The need for non-metallic pipelines

- Issues related to susceptibility of pipeline steels to hydrogen embrittlement
- Aggressive targets for reduction in capital costs
 - Welding is a major cost factor, and in some cases it can exacerbate hydrogen embrittlement
- Expectation that hydrogen delivery infrastructure will rely heavily on sensors and smart structure capabilities
- Incremental improvements to existing NG and H₂ pipeline materials, construction methods and monitoring or diagnostic systems might be inadequate to achieve the cost and performance goals
 - Major breakthroughs will be necessary

Fiber-Reinforced Polymer (FRP) Pipeline Architecture

Inner thermoplastic pressure barrier is reinforced by helical windings of high-strength glass fiber yarns embedded in an epoxy thermoset resin matrix.

Photo provided by Fiberspar LinePipe, LLC

Properties of FRP Pipelines

- Construction provides anisotropic properties
 - Hoop strength extraordinary burst and collapse pressure ratings
 - Longitudinal strength very high tensile and compressive strengths, up to 3% strain in service
- Corrosion resistant and damage tolerant
- Sensors can be integrated into composite structure
 - Real-time structural health monitoring
 - Real-time operational parameters
 - Reduce or eliminate need for pigging operations

Properties of FRP Pipelines

No welding and minimal joining

- Many miles of pipeline can be emplaced as seamless monolith.
- Emplacement requirements are less stringent than those for metal pipeline
 - FRP pipeline can be installed in areas where rightof-way restrictions are severe.

FRP Pipeline Installation

Video used with permission of Fiberspar LinePipe, LLC.

Capital cost estimate for FRP hydrogen transmission pipelines

- Compare today's FRP pipeline costs with capital cost target
- Employ Hydrogen Delivery Scenario Model (HDSAM version 1.0, 4/1/06) to calculate delivery criteria

– Model inputs and assumptions:

- City populations: 200,000 and 1,000,000 people
- Market penetration: 50% light-duty HFC vehicles
- Distance from centralized production to city: 62 mi
- P₁ = 1000 psi, P₂ = 700 psi

FRP pipeline

- Commercial, off-the-shelf linepipe for oil & gas market
- -4.5-inch ID, 1500 PSI rating, PE liner

Capital cost estimation for FRP hydrogen transmission pipelines

• Calculation of pipeline quantity and size (Panhandle B equation)

	City Size	Peak H ₂ Demand (kg/d)	Daily H ₂ Demand (kg/d)	4.5-inch ID Pipelines Required	ID Required for Single Pipeline (inches)
1	200,000	58,600	41,000	4	7.25
	1,000,000	293,000	205,000	17	13.75

Photos provided by Fiberspar LinePipe, LLC

Capital cost estimation for FRP hydrogen transmission pipelines

- Today's cost for 4.5-inch ID, 1500 psi-rated FRP pipeline (pipeline, connectors, transportation, installation) is approximately \$80k per mile
- Installation of four 4.5-inch ID pipelines would require investment of approximately \$331k to \$346k per mile, excluding ROW and permitting costs.

City Size	FRP	Est'd	Total	2017	16-inch ID
	Pipelines	ROW &	Capital	Cost	Steel
	Installed	Permitting	Investment	Target	Pipeline
	(\$k/mi)	(\$k/mi)	(\$k/mi)	(\$k/mi)	(\$k/mi)
200,000	331 – 346	250	581 – 596	490	636

Task 1: Evaluate FRP Pipeline Materials and Construction

- No known hydrogen-related damage mechanisms in FRP pipelines or constituent materials
- ORNL, Fiberspar, and SRNL devised a screening procedure to assess effects of H₂ exposure on samples of commercially available FRP pipeline and constituent materials
 - Immersion in 1500 psi H₂
 - Accelerated aging (60°C)
 - 1 wk, 1 mo, 1 yr exposures

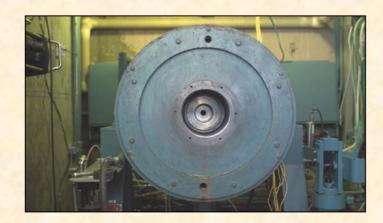
Task 1: Evaluate FRP Pipeline Materials and Construction

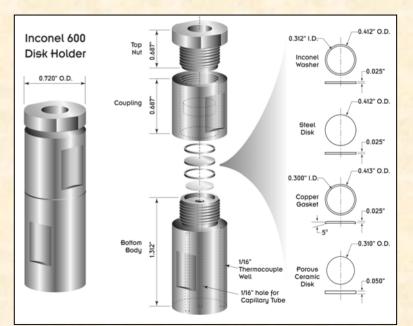
- Post-exposure, perform standard test procedures to detect gross structural degradation
 - Hydrostatic burst pressure tests to assess the overall integrity of the samples
 - Compression tests to determine the ultimate compressive strength of the laminates and determine any adverse effects on the polymer matrix
 - Bend testing to assess the integrity of the laminate
 - Test for conformance with API 15HR, ASTM D2996, ASTM D2517 specifications

Photo provided by Fiberspar LinePipe, LLC

Task 1: Evaluate FRP Pipeline Materials and Construction

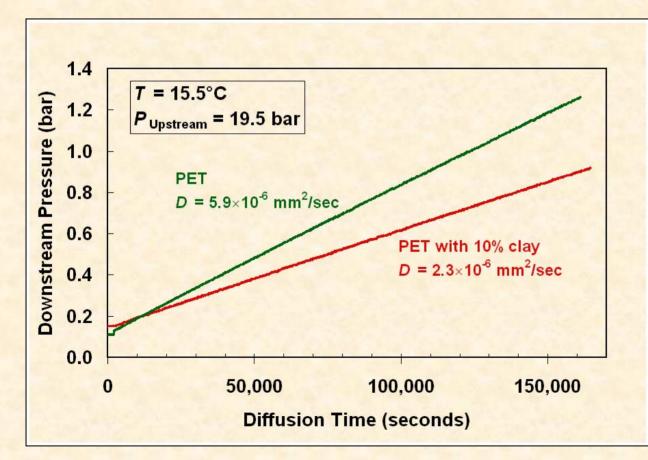
- Post-exposure: perform bench-scale tests of constituent materials
 - Dynamic mechanical analysis of polymer liner and epoxy-fiber matrix "dogbones" to measure changes in the dynamic modulus and the glass transition temperature
 - Pull-tests of glass fibers and yarns


Task 2: Evaluate FRP pipeline liner materials


- Assess permeabilities of liner materials and determine improvement required
 - Tabulate published data on diffusivities/permeabilities of liner materials (*e.g.* PE, PEX, HDPE, PA, PVDF)
 - Perform measurements of diffusivities/permeabilities in samples of OEM liner materials (unpublished data)
 - Evaluate applicability of existing modifications and treatments for reducing permeability in liner materials
 - Use the RD&D Plan, H2A model and other resources to quantify acceptable leak specifications
- Use this information to propose path forward for liner development

Task 2: Evaluate FRP pipeline liner materials

- H₂ permeability & mechanical testing using ORNL hydrogen-service Internally Heated Pressure Vessel
 - Test rig for automated measurements of diffusivity and permeability of metal and polymer films
 - Temperature range 5-1000°C (±0.1°C in range 5-90°C) and H₂ pressures up to 40,000 psi



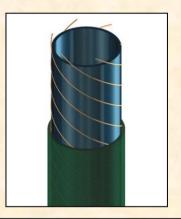
Task 2: Evaluate FRP pipeline liner materials

H₂ diffusion rate measurements for PET polymers

Temperature stabilization is essential for obtaining reproducible results.

Task 3: Evaluate joining and integrated sensor technologies

- FRP hydrogen pipelines will require methods for
 - Joining pipeline during emplacement
 - Joining to pipelines of other materials
 - Repairing/replacing segments of pipeline
- Current joining methods use mechanical compression and elastomeric seals and do not rely on adhesives or plastic welding
 - Evaluate efficacy of methods for hydrogen service
 - Consider new methods of joining the pipelines, such as plastic and composite welding
- Joining methods must withstand high pressures and exposure to harsh environments above & below ground.



Task 3: Evaluate joining and integrated sensor technologies

- Integrated sensors & communication
 - Leakage
 - Local strain
 - Pressure and temperature data

Predecessors

- "Smart" CNG tanks
- ACPT "smart" composite drill pipe
- Fiberspar SmartPipe[™]

Future Work

• FY 2007

- Report results from short- and medium-duration hydrogen exposure in pipeline specimens
- Complete evaluation of liner materials and report results

• Early FY 2008

- Complete assessment of joining and integrated sensor technologies and report results
- Collaborate on development of codes & standards for hydrogen-service FRP pipelines

Project Summary

- **Relevance:** Need viable alternative to metallic pipelines to achieve cost and performance targets for hydrogen transmission and distribution
- Approach: Investigate applicability of FRP pipelines being used for operations in oil & gas and develop path forward for hydrogen
- Progress: Cost scenario shows FRP pipelines competitive; compatibility and permeation testing underway
- **Collaborations:** Industry, university, national lab

Future:

Codes & standards; prototype FRP pipeline system for H₂ delivery; demonstration project

