

Cost-Effective Method for Producing Self-Supporting Pd Alloy Membrane for Use in the Efficient Production of Coal-derived Hydrogen

Kent Coulter, Ph.D. Southwest Research Institute[®] May 16, 2007

This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID #PD16

Overview

Timeline

- Project start: Sep. 09, 2003
- Project end: Oct. 31, 2007
- Percent complete: ~95%

Budget

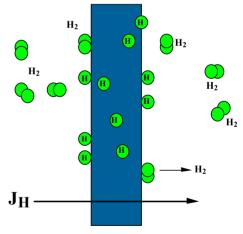
- Total project funding (3 year)
 - DOE share: \$775,771
 - Contractor share: \$194,200
- Funding received in FY06
 - \$263,671
- Funding for FY07
 - \$0

Barriers

- Barriers addressed
 - N. Defects (high yield, large area)
 - O. Selectivity (>99.9%)
 - Q. Flux (>100 scth/ft²)
 - S. Cost (<\$1500/ft²)

Partners

- Colorado School of Mines (Way)
 - H₂ permeation measurements
 - Membrane characterization
- IdaTech (Pledger)
 - Large-scale testing
 - Module demonstration
 - Sealing



Objectives

- Overall DOE Goal: Develop technologies that effectively and economically separate hydrogen from mixed gas streams that would be produced by coal gasification
- Develop a process methodology for the cost-effective manufacturing of thin, dense, self-supporting palladium (Pd) alloy membranes for hydrogen separation from the mixed gas streams of coal gasification processes,
- Reduce Pd membrane thickness by >50% over current stateof-art, and show potential to meet DOE 2010 technical targets.
- Demonstrate viability of using large-area vacuum processing to "engineer" a membrane microstructure that optimizes hydrogen permeability, separation efficiency, and lifetime,
- Demonstrate efficacy of large-batch and/or continuous roll-toroll manufacturing of membrane material with performance and yields within pre-defined tolerance limits
- Demonstrate separation efficiency of thin palladium membrane in commercial-type fuel processor using mixed gas streams.

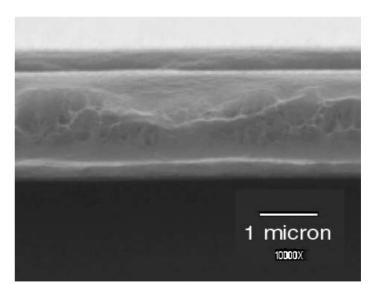
Approach

- Year 1 (Complete)
 - Task 1: Magnetron Sputter Deposition of Pd-Cu Alloys on Small Samples
 - Task 2: Development of Backing Removal Techniques
 - Task 3: Materials Characterization of Sputtered Pdalloy Membranes
 - Task 4: Pressure and Purification Testing
 - Task 5: Prototype Module Design
 - Year 3

- Year 2 (Complete)
 - Task 1: Fabrication of Larger Area Membranes
 - Task 2: Optimization of Membrane Composition/Microstructure
 - Task 3: Refinement and Downselection of Backing Removal Methods
 - Task 4: Production of Membranes at least 75 in² in Area
 - Task 5: Prototype Module Construction
- Task 1: Final Optimization/Selection of Membrane Alloy Composition (Complete)
- Task 2: Pressure and Purification Testing Pilot-Scale Membranes (Complete)
- Task 3: Prototype Module Final Assembly and Testing (75% Complete)
- Task 4: Develop Cost Estimates for Production of Pd Membranes (Complete)

Deposition

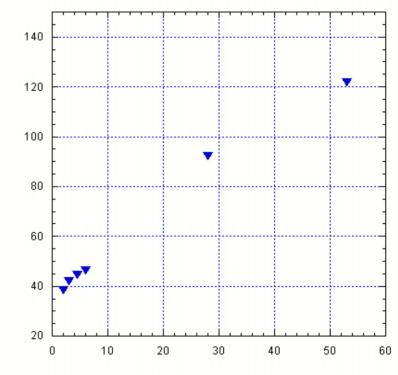
	Plasma Clean	Compliant Layer	Deposition
Power (Watts)	18	500	500
Pressure (mTorr)	0.2	18.0	0.15
Deposition rate (A/s)	-	3.6	3.6
Duration (min)	15	2	245



Membranes

Sample Number	Date	Maker Pd %	EDAX Pd %	Max Flux @ 400C & 20psi [cm ³ /cm ^{2.} min]	CSM Thickness [microns]	Source	Maker Thickness	Permeance @ 400C [cm ³ (STP)/cm ² s ⁻ cmHg ^{0.5}]	Permeability @ 400C [cm ³ (STP) [·] cm/cm ² ·s [·] cmHg ^{0.5}]
051206#1	7/25/2002		57.00	17.9	8.80	SEM		5.98E-02	5.26E-05
051206#1	7/25/2002		57.00	30	8.80	SEM		1.00E-01	8.83E-05
072806#1	8/6/2002	62.00		N/A		SwRI	4.40	N/A	N/A
072806#1	8/27/2002	62.00		22.21	4.40	SwRI	4.40	5.14E-02	2.26E-05
073106#1	8/6/2002	62.00		N/A		SwRI	4.40	N/A	N/A
073106#1	8/7/2002	62.00		N/A		SwRI	4.40	N/A	N/A
073106#1	8/7/2002	62.00		N/A		SwRI	4.40	N/A	N/A
073106#1	9/10/2002	62.00		19.3	4.40	SwRI	4.40	6.46E-02	2.84E-05

Measured H₂ Flux Has Surpassed Program Goals


/olumetric Flux H₂ (cm³ cm⁻² min⁻¹)

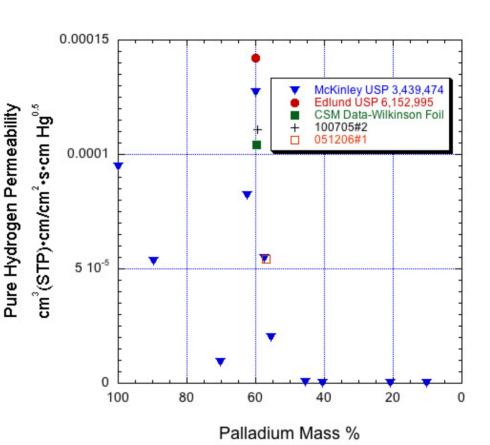
- Best performance data @ 400 °C
 shown for a 2.5 µm Pd-Cu alloy foil,
 area = 2.6 cm2
 - Pure H2 permeability =

8 •10⁻⁵ cm³•cm/cm²•s•cmHg^{0.5}

- H_2 Flux = 124 cm³/cm²•min = 242 scfh/ft²
- Feed pressure = 20 psig
- Exceeds DOE Hydrogen Program and 2010 DOE Fossil Energy targets

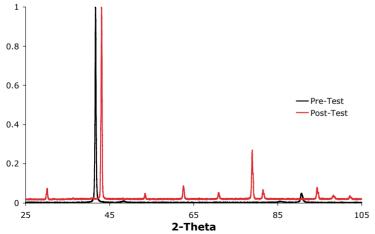
Time (hours)

	SwRI	2007	2010	2015
	Membrane	Target	Target	Target
Flux scfh/ft ² @ 100 psi DP H ₂ partial pressure & 50 psid	564	100	200	300

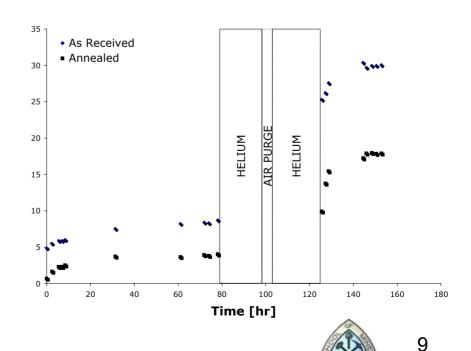


Membrane Composition

- Permeability correlation
 with composition
 consistent with literature
- Wilkinson Foil as a standard
- Test Cycle
 - Forming gas, 8hrs 400°C
 - He, 24 hrs, 400°C (no flux)
 - H₂, 250hrs, 400°C
 - Air Purge, 400°C
 - H₂, 400°C



Annealing



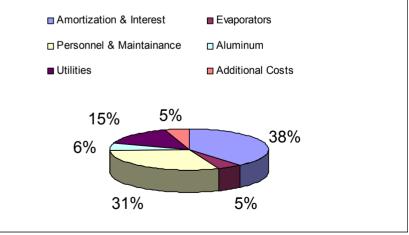
An IDACORP Company

- As prepared – 8.83x10⁻⁵ cm³(STP)cm/cm².s,cmHg^{0.5}
- Annealed 450°C
 - $-5.26 \times 10^{-5} \text{ cm}^{3}(\text{STP})\text{cm/cm}^{2}.\text{s,cmHg}^{0.5}$
- Stress relieved following annealing
- Phase change from alpha to beta

Module Development and **Testing at IdaTech**

- Measured H_2 flux of 420 SCFH/ft² (400°C and 100 psig) on smaller samples provided by SwRI.
- Investigating gasketing arrangements to reliably seal thin membranes.
- Full-scale module test delayed
- More than a dozen full-size prototype membranes have been delivered to IdaTech

Cost Projections



Total Cost/ft² = (F + L + E) / (P*S*1.75 x10⁵) + R

- F is the equipment depreciation,
- L is the fully burdened labor costs
- E is the cost of utilities and maintenance,
- P is the throughput per minute,
- S is the # of 8 hour shifts per day
- R is the raw material cost

- \$35/ft² of Pd
 - Total final cost \$45.50/ft²

Future Work

High Permeability Ternary Palladium Alloy Membranes with improved Sulfur and Halide Tolerance - DE-PS26-06NT42800

Objective: To utilize a iterative modeling, rapid fabrication, and testing approach to develop and demonstrate an ultra-thin (<5 micron) durable ternary Pd-alloy membrane with excellent resistance to sulfur and halogen attack.

Scope of Work

- 1) Materials modelling and composition selection:
- 2) Fabrication of high-performance ternary alloy membranes:
- 3) Membrane testing and evaluation:

Partners

Colorado School of Mines (Way) TDA Research (Alptekin) Carnegie Mellon University (Sholl) IdaTech (Pledger)

Future Work (Continued)

Milestones

Phase I (Year 1)

- Milestone 1.1: Use DFT methods to predict H2 flux through Pd96M4 for M = Ni, Rh, Pt, Nb, Ta, V, Mg and Y. Use same methods to predict H₂ flux Pd74Cu22M4 for at least 3 of the same M.
- *Milestone 1.2*: Screening of initial set (≤ 6) of ternary alloys by pure gas (H₂ and N₂) permeation experiments.

Phase II (Year 2)

- *Milestone 2.1*: Fabricate a minimum of 20 membrane specimens with different copper concentrations based on CMU hydrogen transport predictions for the 2-3 most promising ternary element additions.
- *Milestone 2.6*: Complete 4-5 preliminary tests membrane samples at TDA and IdaTech with clean Syngas and single impurity additions of H₂S and COS.

Phase III (Year 3)

- *Milestone 3.1*: Produce a minimum of 5 sq. ft. of optimized membrane material for use at CSM and TDA and for independent third-party evaluation by IdaTech.
- *Milestone 3.2*: CSM will complete mixture permeation testing with H2/CO and H_2/H_2S binary mixtures with best three samples from the final optimization study.

Project Summary

Relevance

- Robust, high efficiency methods to extract pure hydrogen from coal gas and other sources is critical to the development of a hydrogen economy
- Approach
 - Use a novel, scalable vacuum deposition method to fabricate free standing Pd alloy hydrogen separation membranes and evaluate their performance

Accomplishments

 Produced some of the thinnest (3 um), largest area (110 in2), highest performance separation membranes reported

Summary (Cont'd)

	2005 DOE Target	2010 DOE Target	SwRI
Flux (scfh/ft²)	100	200	242
Cost (\$/ft²)	1500	1000	1500
Hydrogen Quality	99.9	99.95	99.95
DP Operating Capability	200	400	100

Collaborations

 Commercial partner in IdaTech, long track record testing hydrogen membranes at CSM, new interactions with CMU

Future R&D

 Test under more aggressive conditions, develop new ternary alloy formulations with increased durability, demonstrate low-cost pilot production

