Advanced Water Gas Shift Membrane Reactor (DE-FC26-05NT42453)

 T. H. Vanderspurt¹, S. C. Emerson¹, Z. Dardas¹, <u>S. Opalka¹</u>, R. Radhakrishnan¹, S. Seiser¹, S. Tulyani¹, H. Wen¹, & R. Willigan¹, W. Huang², T. B. Flanagan³, D. Wang³

16 May 2006

United Technologies Research Center, East Hartford, CT
QuesTek Innovations, Evanston, IL
Metal Hydride Technologies Inc., Burlington, VT

Project ID: PD 17

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start July 2005
- End June 2007
- 95% Complete

Budget

- Total Project Funding
 - DOE share \$849k
 - Contractor share \$212k
- Funding Received in FY06
 - **\$205**k
- Funding for FY07
 - **\$340**k

Barriers

- Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan
 - Section 3.1.4.2.3: Separations and Other Cross-Cutting Hydrogen Production Barriers (DOE Office of Energy Efficiency and Renewable Energy)
 - M. Impurities
- Hydrogen from Coal Research, Development, and Demonstration Plan
 - Section 5.1.5 Technical Barriers Central Production Pathway (DOE Office of Fossil Energy)
 - D. Impurity Intolerance/Catalyst Durability
 - I. Poisoning of Catalytic Surfaces
 - Q. Impurities in Hydrogen from Coal

Partners

- QuesTek Innovations LLC
- Metal Hydride Technologies

- Identify through Atomistic and Thermodynamic modeling a suitable Pd-Cu tri-metallic alloy membrane with high stability and commercially relevant hydrogen permeation in the presence of carbon monoxide and trace amounts of sulfur.
- Identify and synthesize a Water Gas Shift (WGS) catalyst with a high operating life that is sulfur and chlorine tolerant at low concentrations (0.004 atm Partial Pressure at 42 atm total pressure) of these impurities.

Concept

- Process intensification by removing equilibrium limitations on water gas shift (WGS) reaction & producing >99.99% pure H_2
- Atomistic and thermodynamic modeling of sulfur tolerant Pd-Cu tri-metallic alloys
- WGS catalyst with a high operating life that is sulfur and chlorine tolerant

UTRC Catalyst Discovery Approach

Atomistic catalyst design, synthesis, characterization, reaction studies & kinetic analysis Catalyst Synthesis **Conceptual Catalyst Design**

High active surface area Nanocrystalline structure ~100% NM dispersion

Quantum Mechanical Atomistic Modeling for advanced catalyst design

Superior Performance

Kinetic Expressions Derived From Reaction Data

High Permeability Alloy Design

600

Research Center

echnologies

Seek to maximize H permeability: permeability = diffusivity x solubility

Assessment, and validation of thermodynamic model against literature data Modeling of phase behavior and properties

PdCu bcc H diffusion activation barriers lower than those in fcc PdCu. Design more stable ternary bcc PdCuTM phase.

Accomplishments

Pd_{0.44}Cu_{0.56} B2 Alloy H Solubility Measurements

H solubility is small and endothermic: solubility increases with temperature, contrary to H behavior in other Pd alloys. Thus, increased solubility at a fixed diffusivity yields higher permeability.

Thermodynamic Modeling: H Solubility in PdCu B2

Thermodynamic modeling delineates boundaries for max. H solubility in high diffusivity Pd_{0.47}Cu_{0.53} B2 phase.

Comparison FP Predictions & Experiment

Prediction of H Permeability in Pd_{0.47}Cu_{0.53}

Bulk H permeability (Q) predicted from our experiments, & thermodynamic assessments in agreement with Ma et al. (2003).

Pd-Cu-Transition Metal Ternary Assessments

G5 shows maximum solubility of 1.5 atomic % in PdCu B2 phase.

Technologies Research Center

United

Predicted H Solubility for Selected Ternary Alloy

thermal cycling and compositional fluctuations.

United

lechnologies

Diffusivity and Permeability of Selected Alloy

Comparison at AWGSMR Conditions: 400 °C and 43.8 bar.

Composition	H solubility, Ks	Predicted Diffusivity, D	Predicted Permeability, Q	Typical experimental Permeability, Q
	Pa ^{0.5}	m².s⁻¹	mol.s ⁻¹ .m ⁻¹ .Pa ^{-0.5}	mol.s ⁻¹ .m ⁻¹ .Pa ^{-0.5}
Pd _{0.47} Cu _{0.52} G5 _{0.01}	1.17×10 ⁻⁵	9.69×10 ⁻⁹	1.11×10 ⁻⁸	
Pd _{0.47} Cu _{0.52} (bcc)	1.25×10⁻⁵	6.30×10 ⁻⁸	7.89×10 ⁻⁸	
Pd _{0.77} Cu _{0.23} (fcc)				≈ 4×10 ⁻⁹

Selected alloy is predicted to have at least twice the permeability of the best candidate fcc phase, with thermal and chemical stability.

Sulfur Resistance of Ternary Alloy

Pd Cu G5 H S

Optimal H₂S binding configurations predicted at ground state

 H_2S on Pd_8Cu_7G5 (110)

 H_2S on Pd_8Cu_8 (110)

- G5 ternary element preferentially substitutes for subsurface Cu.
- H₂S binding is ≈10 kJ/mole weaker on the Pd₈Cu₇G5 B2 (110) surface compared to binding on PdCu B2 (110) surface.

Ternary alloy predicted to have the sulfur resistance comparable to fcc PdCu alloys with the higher permeability of bcc PdCu alloys.

Results: Lower Sulfur Binding Energy Predicted

Low CO Binding Energy Preferred For 42 atm, high CO partial press. Coal Gas

	CO, eV	H ₂ O, eV	H ₂ S, eV
TiO ₂ - Anatase	-0.32	-0.64	-1.93
TiO2 - Rutile	-0.09	-1.16	-0.90
Ti _{0.96} J6 _{0.04} O ₂	-0.34	-0.72	-2.09
Ce _{0.5} Zr _{0.4} J6 _{0.1} O ₂	-0.63	-0.74	-2.14
Ce _{0.5} Zr _{0.4} E4 _{0.1} O ₂	-0.97	-1.01	-2.43
Ce _{0.33} Zr _{0.33} E4 _{0.33} O ₂	-0.01	-0.83	-0.29

	CO, eV	H ₂ S, eV
Pt / TiO ₂ - Anatase	-1.67	-2.37
Pt / Ti _{0.96} J6 _{0.04} O ₂	-0.97	-2.02
Pt / Ce _{0.5} Zr _{0.4} J6 _{0.1} O ₂	-1.74	-3.66
Pt / Ce _{0.33} Zr _{0.33} E4 _{0.33} O ₂	-0.32	-1.84

H₂S/Pt/J6-Doped TiO₂ Anatase(101) Binding Energy: -2.02 eV/H₂S

The electronic structure of doped oxides modifies that of Pt monolayer thus lowering CO, H_2S binding energies to Pt.

Catalyst Test Results Consistent with Modeling

RATE DATA AT 400 C - Normalized to 2% Pt

Research Center

[echnologies

Future Work

 (Apr-Jun '07) Complete evaluation and durability tests of final set of catalysts and deliver final report.

Advanced Membrane Reactor Water Gas Shift Summary

Relevance Lower cost high purity H_2 production from precleaned coal gas: Eliminates need for: 1) complete sulfur scrubbing, 2) separate H_2 extraction/purification train and retentate gas is >90% CO₂ on a dry basis.

Approach

- Atomistic and thermodynamic modeling to design high stability BCC Pd-Cu based trimetallic alloy with commercial relevant permeance.
- Design synthesize and test catalyst tailored to needs of advanced membrane reactor

Accomplishments

- Two "stabilized" BCC alloys $Pd_{0.5}Cu_{(0.5-x)}G5_x$ and $Pd_{0.5}Cu_{(0.5-x)}J6_x$ investigated.
- Permeance, stability, and composition of Pd_{0.5}Cu_(0.5-x)G5_x predicted
- WGS catalyst family potentially resistant to H₂S identified

Issues

Completing 1500-h durability run at high pressure

