Low Cost Hydrogen Production Platform

Cooperative Agreement: DE-FC36-01GO11004 Project ID #: PD1

Timothy M. Aaron

Team

Praxair - Tonawanda, NY Boothroyd-Dewhurst - Wakefield, RI Diversified Manufacturing - Lockport, NY

DOE Hydrogen Annual Review Meeting May 15 - 18, 2007

DOE Hydrogen Program

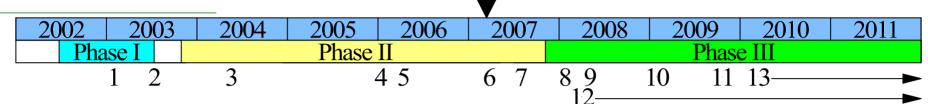
This paper was written with support of the U.S. Department of Energy under Contract No. DE-FC36-01GO11004. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted paper. This presentation does not contain any proprietary or confidential information.

LCHPP – Objectives

Low cost on-site hydrogen production

- Existing technologies (SMR)
- Transportation and industrial (4.8 kg/h)
- Approach DOE goal of \$1.50 \$2.00 kg (production only)
- Gas station capacity and size Single, easily installed skid

Fueling station integration


- Prototype construction
- LAX fueling station
 - Installation and operation (2 years)
 - High pressure (700 bar) compression and dispensing

> DOE barriers addressed (top 3) – Hydrogen Production

- A. Reformer capital costs
- B. Reformer manufacturing
- C. Operation and maintenance (O&M)
- > DOE barriers addressed (top 3) Technology Validation
 - C. Lack of hydrogen refueling infrastructure performance and availability data
 - D. Maintenance and training facilities
 - E. Codes and standards

DOE Project Timeline

- > Phase I Preliminary design
 - 1. Preliminary component and system design
 - 2. Techno-economic study

> Phase II - Detail design and optimization

- 3. Detail design and computer models
- 4. Lab scale testing completed
- 5. Full scale test apparatus constructed
- 6. Proof of concept component testing completed
- 7. Update system design and economic models

> Phase III - Prototype system & fueling station integration

- 8. Complete prototype design
- 9. Build prototype system
- 10. Verify system performance and update economics
- 11. Commercialize hydrogen system
- 12. Hydrogen compression to 700 bar (10,000 psig) (LAX)
- 13. Fueling station integration (LAX)

Budget - LCHPP Program

> Phase I

- Completed 06/03
- > Phase II (10/03 06/06) In progress
 - Total budgeted cost: \$1,989,933
 - Cost share: 50/50 \$994,967 DOE/Praxair
 - FY2004 DOE funds (10/03 09/04) \$120,000 (actual)
 - FY2005 DOE funds (10/04 09/05) \$277,155 (actual)
 - FY2006 DOE funds (10/05 09/06) \$300,000 (actual)
 - FY2007 DOE funds (10/06 09/07) \$ 15,000 (to date)
 - DOE Phase II total DOE shortfall to date \$285,812

Phase III (10/07 - 12/11) - Technology Validation

- Cost share: 50/50
- FY2007 DOE funds (10/06 09/07) \$0

Approach

Phase II – Hydrogen Production

- Complete component testing
- Prove system design
- Procure prototype long lead materials
- Update prototype design
- Final report and Phase III proposal

> Phase III – Prototype System

- HAZOP and safety reviews
- Construction
- Installation
- Control system
- Performance testing
- System economics
- Economies of scale
- Tooling cost analysis
- Market analysis

Phase III – 700 bar compression (LAX)

Analysis of options

 \succ

- Compression
- Dispensing
- Integration
- Project scope / definition
- HAZOP and safety reviews
- Site characterization & permitting
- Procurement
- Installation
- Operation and support
- Phase III Prototype (LAX)
 - Project scope / definition
 - Site characterization & permitting
 - Installation
 - Operation and support

Design Specifications

Inputs

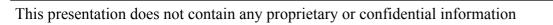
- Natural gas or equivalent
 - 5-30 PSIG
 - Std specifications
 - 850 SCFH
- Water
 - Std potable specs
 - <0.5 GPM</p>
- Electrical
 - 220/480 VAC
 - 12 KW

> Outputs

- Hydrogen product
 - 4.8 kg/h (2,000 scfh)
 - <10 PPM CO</p>
 - >99% purity
 - 100-120 PSIG
- Turndown capabilities
 - 50% minimum
- System package
 - **7'-6" x 10' x 10'**
 - 18,000 lbs

System

- Safety
- Compact, single skid
- Easily installed
- > Welded construction
- > Highly integrated



High Temperature Component

Functions

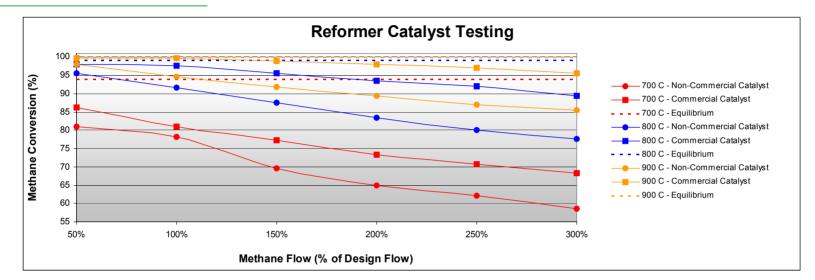
- Natural gas pre-heat
- Desulfurization
- Reforming
- Water-gas shift reactor
- Steam generation and superheat
- Combustion
- Air/exhaust/process heat exchange
- Syngas cooling
- > Design
 - DFMA
 - Highly integrated
 - Welded construction

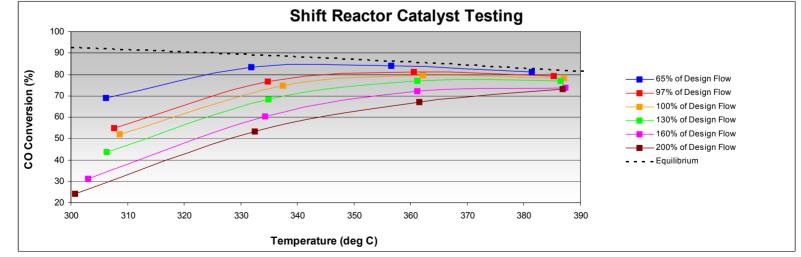
LCHPP – Accomplishments

> High temperature component

- Prototype design complete
- Computer modeling complete
- Material selection complete
- Patent application submitted

> Testing


- Lab scale reformer testing completed
- Full scale testing continues
 - Reformer thermal management proven
 - Optimization testing underway
 - Catalyst
 - Burners
 - Steam system
 - Auxiliary components



Catalyst courtesy of Johnson-Matthey

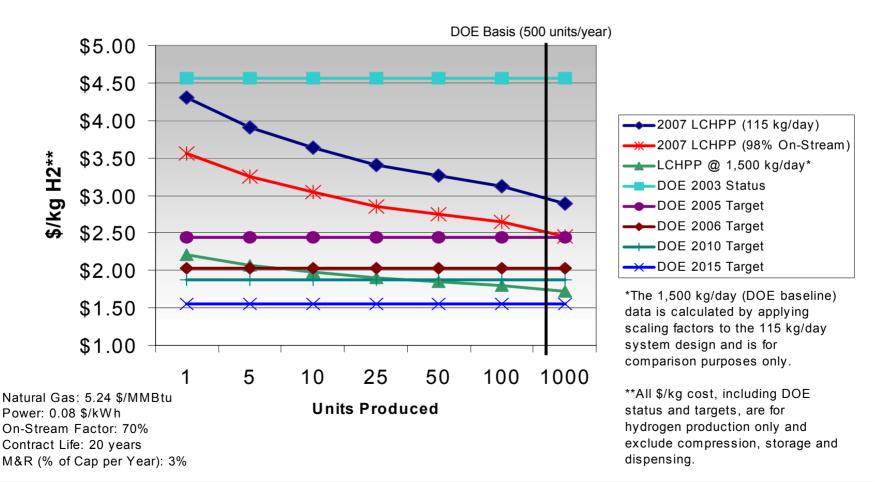
LCHPP – Accomplishments (Catalyst Testing)

Accomplishments vs. DOE Barriers

> A. Fuel processor capital costs

- Highly integrated system
- "Off-the-shelf" components used wherever possible
- No significant system cost increases from last year
 - Higher material costs
 - Part count nearly identical
- Unit capital cost comparable to plants 20x larger
- Approaching overall DOE goals
- Set new baseline for cost of H2 from a small on-site system
- > B. Fuel processor manufacturing
 - Extensive use of DFMA techniques (BDI)
 - Part count
 - Assembly time/complexity
 - Welded construction
 - Review of current design manufacturability (DMI)
 - Prototypes to verify results

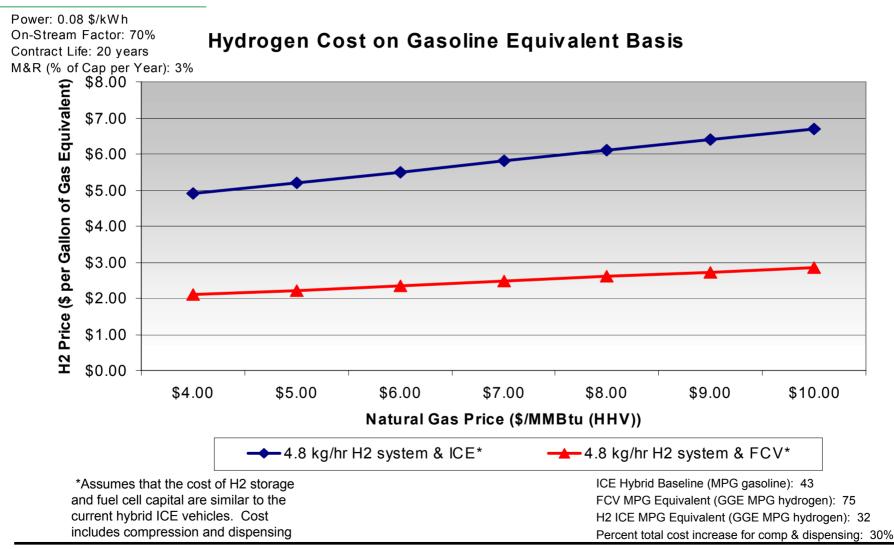
Accomplishments vs. DOE Barriers - Continued


> C. Operation and maintenance (O&M)

- Control system remote capability
- Easy access to critical equipment
- High quality components used
- Designed for 15 year life (7.5 year high temp component refurbishment)
- > D. Feedstock and water issues
 - Currently natural gas reforming
 - Considerations given to alternative feedstocks
 - Water treatment and steam system being tested
- F. Control and safety
 - Risk analysis completed
 - Full HAZOP review of system will be performed
 - All applicable standards will be followed
 - Develop safety and design standards (ISO TC197 working groups)


Technical Accomplishments / DOE Program Goals

H2 Cost vs Units Produced and H2 Flowrate



Fueling Station H2 Cost Analysis

Hydrogen Cost vs. Gasoline

LCHPP - Future Work

Remainder of FY 2007

- Testing of components / proof of design
 - Complete the component testing
 - High temperature component reformer, shift, desulfurization, heat transfer, burner, steam generation
 - High temperature materials
 - Natural gas compression
 - Pressure Swing Adsorption (PSA) system
 - Auxiliary components
 - Life testing
- Comparative analysis with supply alternatives
- Complete the design of prototype
- Procurement of prototype long-lead materials

LCHPP - Future Work

> FY 2008 – Phase III of program

- Develop prototype system components and skid
 - Fabrication and assembly
 - Testing
 - 700 bar hydrogen compression at LAX
- FY2009-11 Phase III
 - Prototype at LAX fueling station
 - Installation and integration
 - Field experience
 - Commercialize system
 - Economic models
 - Manufacturing plan
 - Production design, fabrication and assembly drawings
 - Design of jigs and fixtures
 - Supplier selection

LCHPP - Summary

LCHPP program

- Low cost benchmark for small scale hydrogen production
 - Projected cost as low as \$2.75/kg @ 4.8 kg/hr
- Revised schedule
 - Completion of Phase II at end of 2007
 - Completion of Phase III at end of 2011
- Component testing nearing completion
- Prototype procurement underway
- Full size prototype unit available in 2008
 - Life testing of system
- Placement at LAX fueling station
 - 2008 700 bar hydrogen compression and dispensing
 - 2009 Hydrogen system

Cooperative Efforts

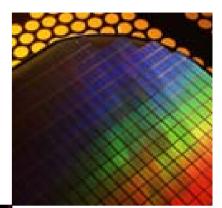
- > US Department of Energy
 - Sponsor
- > Praxair
 - Overall lead

> Boothroyd-Dewhurst

- System optimization
- Cost reduction / estimating

> Diversified Manufacturing

- Manufacturing
- Prototype development



Low Cost Hydrogen Production Platform

Cooperative Agreement: DE-FC36-01GO11004

Questions?

DOE Hydrogen Annual Review Meeting May 15 - 18, 2007

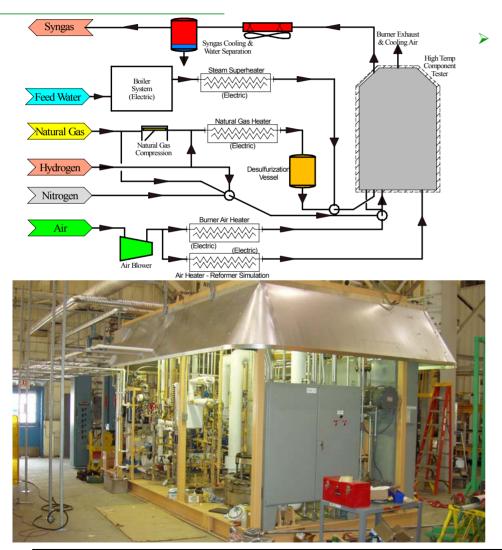
DOE Hydrogen Program

This paper was written with support of the U.S. Department of Energy under Contract No. DE-FC36-01GO11004. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted paper. This presentation does not contain any proprietary or confidential information.

Praxair Hydrogen

- Only U.S. hydrogen supplier in all sizes (cylinders to liquid to pipelines)
 - First industry-financed liquid hydrogen facility (1959)
 - Six large LH₂ plants designed, constructed, and operated
 - Largest capacity single-train LH₂ production system (60 t/d)
 - Four LH₂ plants currently in operation
 - Smallest industrial SMR-based product line (HGS)
- > Over 1 billion SCFD capacity in 2006
- > Current distribution network:
 - Over 600 GH₂ and LH₂ customers
 - Over 300 miles of GH₂ pipeline
 - Fleet of liquid and compressed gas trailers

> First PSA H₂ unit (over 300 designed and built)



LCHPP - Skid Process Flow

Full Scale Test Rig

System

- Full scale burner
- Air blower
- Electric heaters (4)
- Steam system
- Natural gas, nitrogen and hydrogen gas supplies
- GC gas analysis
- Recording of 24 analog channels and 88 thermocouples
- Testing
 - High temperature functions (reformer, shift reactor, heat transfer, steam generation)
 - Materials
 - Life testing