Hybrid Sulfur Thermochemical Process Development

William A. Summers Savannah River National Laboratory May 16, 2007

Project ID # PD21

This presentation does not contain any proprietary, confidential or otherwise restricted information

Overview

Timeline

- Start Date: June, 2004
- End Date: Sept, 2010
- 33% Complete

Budget

- Total Project Funding
 - Total thru FY10 = TPD
 - DOE Share = 100% (to date)
- FY06 Funding = \$1200 K
 - Carryover to FY07 = \$274 K
- FY07 Funding = \$1200 K

Barriers

- High-temperature thermochemical technology
- High temperature robust materials
- Nuclear Hydrogen production costs
- TARGET Technical feasibility and economic viability for centralized hydrogen production from nuclear

Partners

- Giner Electrochemical
- Univ. of So. Carolina U-NERI
- Westinghouse Electric
- Sandia National Laboratory

Objectives

- Overall: Develop the Hybrid Sulfur thermochemical cycle and demonstrate in an integrated laboratory scale experiment producing >100 lph of hydrogen
- FY06: Develop and test an SO2 depolarized electrolyzer (SDE) using PEM-type cell design
 - Characterize, analyze and select cell components
 - Test single cell SDE electrolyzers at elevated temperature and pressure
- FY07: Develop improved electrolyzers; demonstrate extended operation capability; scale-up to larger size
 - Continue to identify and develop improved cell components
 - Conduct 100 hour longevity test on single cell SDE
 - Design and build multi-cell SDE with 100 lph hydrogen capacity

FY07 Plan and Approach

•	Component Selection and Characterization	45% Complete
	 Membrane selection, testing and analysis Accomply of single cell membrane electrode cocomplies 	
	Single-Cell Characterization Testing	85% Complete
	 Upgrade test facility (instrumentation, 80°C, 6 bar) Design, assemble and test single-cell electrolyzers 	
	 Cell flow and mass transfer optimization Temperature, pressure and acid strength effects 	
	Longevity Testing	35% Complete
	 100-hour test on promising single cell electrolyzer 	
	Multi-cell Stack	50% Complete
	 Design and construct multi-cell SDE for >100 lph H2 production Collaborate with industrial PEM electrolyzer company 	
•	Critical thermophysical properties	20% Complete
	- Determine properties for $H_2O/SO_2/H_2SO_4$ mixtures	

Accomplishments Summary

- Process Design Updated
 - Improved system design with higher process efficiency of >54% (HHV)
- Key SDE Components Selected and Characterized
 - Nafion 115 and hydrocarbon (SDAPP) membranes most promising
 - Pt/C selected for anode and cathode electrocatalyst
- Extensive Single Cell Electrolyzer Tests Completed
 - Eleven PEM-based SO₂-depolarized electrolyzers (SDE) tested
 - SDEs characterized at up to 80°C, 6 atm, 30-50 wt% sulfuric acid
 - Preparation completed for 100 hour longevity testing
- Larger Multi-cell Stack in Progress
 - Partnership with Giner Electrochemical established
 - 3-cell, 100 lph stack design nearing completion
 - Multi-cell electrolyzer completion scheduled for September, 2007

Hybrid Sulfur Thermochemical Process

- Simplest thermochemical cycle
- Requires electric & thermal input
- High temperature (>900°C) heat source could be nuclear reactor or solar thermal
- Thermochemical system has three main processing units
 - Sulfuric Acid concentration and decomposition
 - SO₂/O₂ separation
 - SO₂-depolarized electrolyzers

WSRC-STI-2007-00191

HyS Chemical Reactions

Hybrid Sulfur Chemistry

 $H_2SO_4 \leftrightarrow H_2O + SO_2 + \frac{1}{2}O_2$ S (thermochemical; 800-900 °C)

 $SO_2 + 2 H_2O \rightarrow H_2SO_4 + H_2$ (electrochemical; 80-120 °C)

Net Reaction: $H_2O \rightarrow H_2 + \frac{1}{2}O_2$

Sulfur Dioxide Depolarized Electrolyzer (SDE)

Anode Reaction:

$$SO_2 + 2H_2O \rightarrow H_2SO_4 + 2H^+ + 2e^- = -0.158 V$$

Cathode Reaction:

$$2H^+ + 2e^- \rightarrow H_2$$
 $E_0 = 0.000 V$

Net Reaction:

$$SO_2 + 2H_2O \rightarrow H_2SO_4 + H_2$$
 $E_o = -0.158 V$

HyS Electrolyzer Concept

- Sulfur dioxide is oxidized at the anode to form sulfuric acid
- Reversible cell voltage to split water reduced from 1.23 to 0.158 volts per cell
- Practical cell voltages 0.5 0.6 volts (~75% less than direct electrolysis)
- PEM cell design permits compact design, reduced footprint and lower cost
- Economics dictate design with high current density and low per cell voltage
- Current HyS plant design based on electrolyzer operation at 80-120 °C and 20 bar with 50-60 wt% sulfuric acid

SO₂ Depolarized Electrolysis

HyS Process History

Patent for "Sulfur Cycle" issued to	
Westinghouse Electric Corporation	1975
Two-compartment Diaphragm Cell Built	1977
Closed-loop Process Demonstration by (W)	1978
Solar-driven Process Design Completed by (W)	1983
Development "Hiatus"	1984-2003
New Process Design work by (W)	2004
Conceptual Design of HyS by SRNL	2005
Proof-of-Concept for PEM-based SDE	2005
Pressurized, Elevated Temperature SDE Testing	2006
Improved PEM Design; Multi-cell stack SDE	2007

SO₂ Electrolyzer Components

Proton Exchange Membrane

- Minimal SO₂ Transport
- Maximum ion conductivity

Anode

- Maximum SO₂ oxidation kinetics
- Minimal attack by SO₂/H₂SO₄

Cathode

- Maximum hydrogen formation kinetics
- Mininal reaction with SO₂

Flow Field/Diffusion Media

- Maximize SO₂ transport to anode
- Low pressure drop

~200 µm

Component Development

- Develop optimum components for sulfur dioxide-depolarized electrolyzer
 - anode
 - cathode
 - membrane
 - flow field and diffusion media
- Fabricate membrane electrode assemblies (MEA) for electrolyzer system testing in single-cell test facility

Ionic conductivity and SO2 transport test apparatus

Catalyst Characterization Set-up

Membrane Characterization Set-up

Ionic conductivity and SO2 Transport Apparatus

- Working electrode (1) is used during the ionic conductivity measurements
- Working electrode (2) is used during the SO2 transport measurements

Simplified schematic of the Ionic Conductivity cell using Electrochemical Impedance Spectroscopy (EIS)

Commercial and Experimental Membranes Characterized to Date

ID	Manufacturer	Classification	Thickness μm	Equivalent Weight g/eq
N112	DuPont	PFSA	50	1100
N115	DuPont	PFSA	130	1100
N117	DuPont	PFSA	180	1100
F-1460	Fumatech	PFSA	60	1400
F-1050	Fumatech	PFSA	50	1000
F-960	Fumatech	PFSA	60	900
Celtec-V	PEMEAS	PBI with immobilized electrolyte	100	
Celtec-L	PEMEAS	PBI	100	
OXPEKK	OPM	SPEKK	25	N/A
FKB	Fumatech	PEEK	80	
E-750	Fumatech	SPEK	50	700
N-324	DuPont	Fabric Reinforced PFSA	~320	N/A
PN117	GES	Pt-treated PFSA	180	1100
SDAPP2.2	SNL	SDAPP	50	N/A
SDAPP1t	SNL	SDAPP	50	N/A
SDAPP4t	SNL	SDAPP	25	N/A
SDAPP1.6	SNL	SDAPP	76	N/A

Membrane Test Results

- High proton conductivity and low SO2 crossover are preferred
- E750 (SPEK polymer) has highest ratio, but it is unstable under electrolyzer conditions
- SDAPP (from Sandia NL) and PN117 (Pt-treated PFSA from Giner) appear promising
- Conventional Nafion membranes have good conductivity, but suffer from higher SO2 transport

Catalyst Testing: Reaction Kinetics and Stability during Cycling

- Kinetic activity decreases as the acid strength increases
- Pt exhibits approximately 100 mV better performance than Pd
- Based on cyclic voltammetry, Pt exhibits greater stability than Pd
- Current electrocatalyst selection is Pt
- We are also studying alloy catalysts with Pt and transition metals

WSRC-STI-2007-00191

Single-cell Testing

SO2-depolarized electrolyzer

Single-cell Electrolyzer Design Variables

- MEAs with different membrane types
- MEA preparation procedures
 - Catalyst coated electrode
 - Catalyst coated membrane
 - Combined approach
- Catalyst loading
- Flowfield design
- Diffusion media
 - Carbon papers
 - Carbon cloths
 - Different micro-porous layers

SRNL Single-cell Test Electrolyzer

WSRC-STI-2007-00191

Cell Configurations Tested to Date

MEA No.	Nominal Active Cell Area, cm2	Membrane Type	Thickness (μm)	Anode Loading (mg of Pt/cm ²)	Cathode Loading (mg of Pt/cm ²)
1	50	Nafion [®] 115	130	0.68	0.65
2	50	Nafion [®] 117	180	1.1	1.1
3	50	Nafion [®] 117	180	1.4	1.3
4	50	Nafion [®] 117	180	0.9	1.0
5	50	Celtec-L	100	1.0	1.2
6	50	2 x Celtec-L	200	2.2	1.5
7	50	Celtec-V	100	0.8	0.8
8	60	Nafion [®] 115	130	0.8	0.6
9	60	Nafion [®] 117 (Giner MEA)	180	4 (Pt Black)	4 (Pt Black)
10	60	Nafion [®] 117 (Giner MEA)	180	1 (Pt Black)	1 (Pt Black)
11	50	Nafion [®] 115	130	1.09	0.72

All MEA's fabricated by SRNL unless noted. MEA #1 is catalyst-coated electrode; all others are catalyst-coated membrane. Anode/cathode electrode support: Carbon paper/carbon cloth (except MEA #1).

Performance Improves with Temperature and Declines with Acid Strength

WSRC-STI-2007-00191

Multi-cell Stack Development

- Established partnership with Giner Electrochemical
- Leverage existing PEM water electrolyzer technology
- Maximize use of existing components and hardware
- Design in progress; stack due in September, 2007
- Bi-polar 3-cell stack using round plates with 160 cm2 active area per cell
- Rated capacity is 100 lph of hydrogen production under SO2-depolarized conditions

Results and Issues

 Significant progress in cell performance has been achieved, but further improvements are required

Status: 750 mV vs. 600 mV goal at 500 mA/cm2

- Operation at higher acid strengths, increased temperature and pressure and higher SO2 utilization rates are required
- Longevity testing will help establish lifetime issues and material concerns
- Crossover of SO2 and formation of elemental sulfur is a major challenge – both improved membranes and cell design and operating changes are being pursued
- Scale-up to both larger cell sizes (active area per cell) and larger stacks are required
- Leveraging of existing PEM technology and existing water electrolyzer design experience is being incorporated

Milestone Status

No.	Description	Due	Status
1	Complete single-cell test system develop.	1/15/07	Complete
2	Complete membrane selection for longevity	4/15/07	Complete
3	Complete 100-hour Longevity Test	6/15/07	On schedule
4	Complete multi-cell stack design	7/1/07	On schedule
5	Complete H2O/SO2/H2SO4 properties determination	8/1/07	On schedule
6	Complete cell component characterizations	8/15/07	On schedule
7	Complete construction of multi-cell stack	9/15/07	On schedule

Future Work

- Continue component characterization and development of improved cell membranes
- Complete 100 hour longevity test (Level 1 Milestone)
- Complete design and construction of multi-cell stack
- Continue work with industry partners on improved membrane using innovative design approaches
- FY08:
 - Continue electrolyzer development; identify optimum membrane; extend operation to more severe conditions; scale-up to larger capacities
 - Design and build an Integrated Lab-Scale Experiment of HyS, including high temperature acid decomposition and SO2/O2 separation

Summary

- SO2 Depolarized Electrolyzer (SDE) is the key component for the success of the HyS thermochemical cycle
- SRNL has demonstrated the use of PEM cell technology for SDE – leading to more efficient and lower cost electrolyzer possibilities
- Ongoing tests will establish key cell design parameters, including membrane performance
- An integrated lab-scale experiment of the entire HyS Process is the next key step
- Successful cell development could lead to commercialization of thermochemical hydrogen production using nuclear or solar heat sources

