gti

One Step Biomass Gas Reforming-Shift Separation Membrane Reactor

Michael Roberts¹, Jerry Lin², Richard Killmeyer³, Mark Davis⁴, and Nancy Beaudry⁵

¹Gas Technology Institute
²Arizona State University
³National Energy Technology Laboratory
⁴Schott North America
⁵Wah Chang

May 15-18, 2007 2007 DOE Hydrogen Program Review Project ID PD5

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- > Start: 02/01/2007
- > End: 01/31/2011
- > Percent complete: 2%

Budget

- > Total project funding:
 - -DOE share:
 - -Contractors share:

\$3,396,186 \$2,716,949 \$679,237

- > Funding received in FY06: \$0
- > Funding for FY07: \$676,403 (\$450k rec'd ytd)

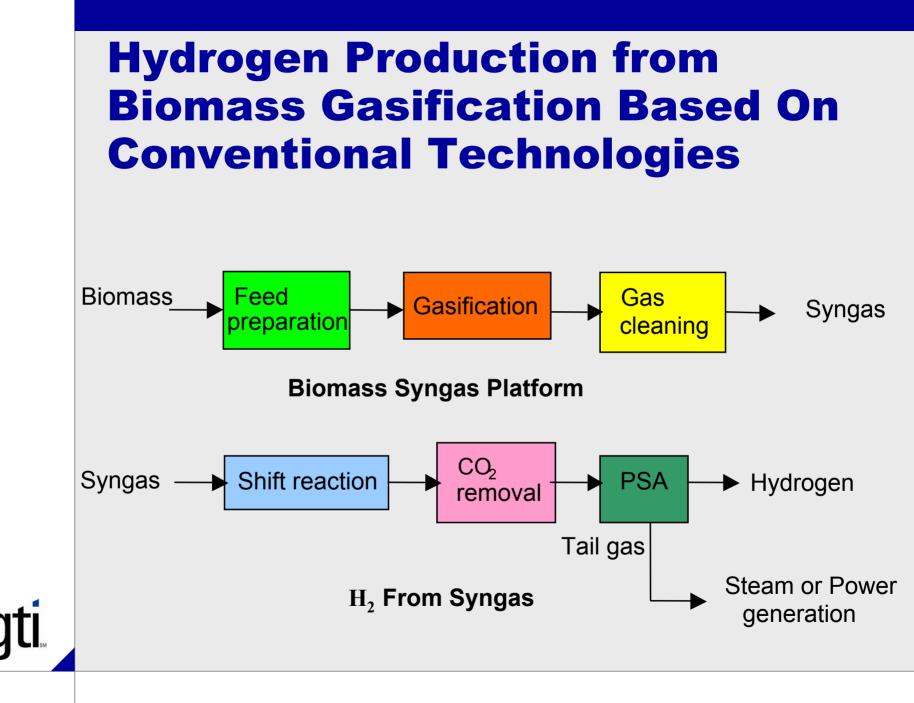
Overview (con't) Barriers

>Hydrogen Production from Biomass Barriers

G. Efficiency of Gasification, Pyrolysis, and Reforming Technology I. Impurities N. Hydrogen Selectivity O. Operating Temperature P. Flux

>DOE Technical Targets

- $2-3/kg H_2$ from biomass delivered target
- $1.60/kg H_2$ from biomass without delivery

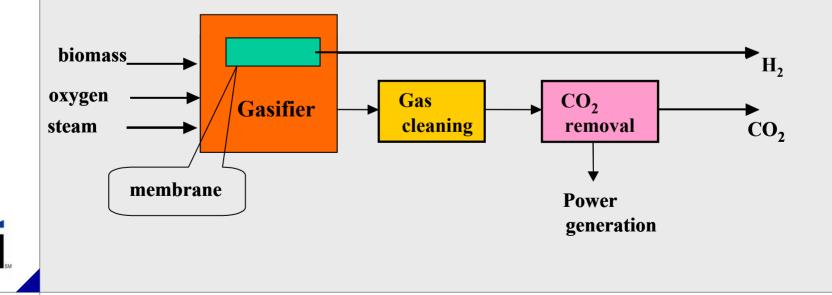

Partners

>Arizona State University

- >National Energy Technology Laboratory
- >Schott North America
- >Wah Chang, an Allegheny Technology Company

Project Objectives

- > Reduce the cost of hydrogen from biomass to \$1.60/kg H₂ (without delivery)
- Develop an efficient membrane reactor that combines biomass gasification, reforming, shift reaction and H₂ separation in one step
- > Develop hydrogen-selective membrane materials compatible with the biomass gasification conditions
- > Demonstrate the feasibility of the concept in a bench scale biomass gasifier



Hydrogen Production Cost from Biomass Gasification

Approach

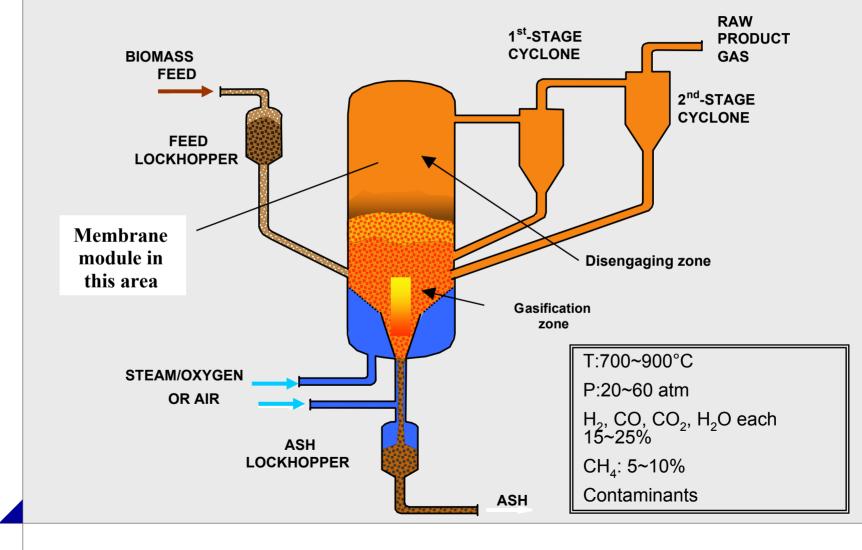
- Extract hydrogen directly from gasifier using high temperature H₂-selective membrane
- > Achieve one-step biomass gas reforming, shift and hydrogen separation

Potential Benefits of Membrane Reactor for

Hydrogen Production from Biomass

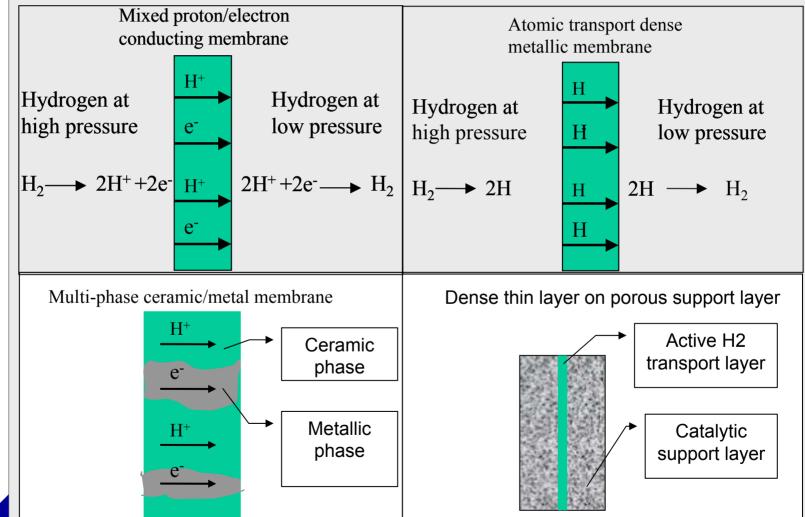
- > High H₂ production efficiency:
 - Thermodynamic analysis indicates potentially over 40% improvement in H₂ production efficiency over the current gasification technologies

Eliminate loss in PSA tail gas	
More CO shift	$H_2O+CO = CO_2+H_2$
Reform CH ₄	$CH_4 + H_2O = CO + 3H_2$


- > Low cost:
 - reduce/eliminate downstream processing steps

> Clean product:

- no further conditioning needed, pure hydrogen
- > CO₂ sequestration ready:
 - simplify CO₂ capture process
- > Power co-generation:
 - utilization of non-permeable syngas


GTI's Fluidized Bed Gasifier RENUGAS®

Ideal for Membrane Gasification Reactor

Advanced Inorganic Membranes for

Biomass Gasification Application

Scope of Work

- > Task 1. Membrane material development
 - 1.1 Ceramic material synthesis & testing
 - 1.2 Metallic material synthesis & testing
 - 1.3 Composite membrane synthesis & testing
 - 1.4 Optimization of selected candidate membranes
- > Task 2. Gasification membrane reactor process development and economic analysis
- > Task 3. Bench-scale biomass gasifier design and construction

Scope of Work (con't)

- > Task 4. Integrated testing of initial membrane with gasifier
 - 4.1 Design of membrane module configuration
 - 4.2 Membrane module fabrication
 - 4.3 Testing of bench-scale membrane reactor
- > Task 5. Integrated testing of best candidate membrane with gasifier
- > Task 6. Project Management and reporting

Task 1.1 Ceramic Membrane Material Synthesis and Testing

led by Arizona State University

- > Improve proton and electronic conductivity and chemical stability of ceramic membrane
 - Cerate-based ceramic membrane
 - Doping one or two elements
- Study H₂ permeation and chemical stability of proton conducting ceramic membranes
 Compatible to biomass-derived syngas
- > Develop synthesis methods to prepare thin membranes of the modified ceramics
 - Increase hydrogen flux

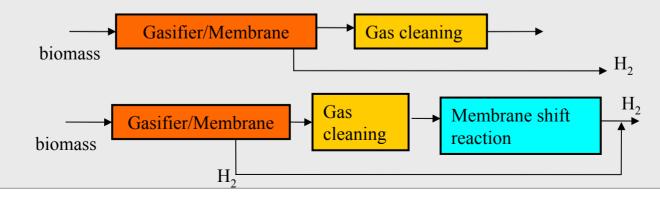
Task 1.2 Metallic Membrane Material Synthesis and Testing led by NETL

- > Oxidation and Sulfidation Corrosion Analysis
 - TGA of PdCu and other alloys under gasifier conditions
- > Permeability Characterization in H₂S
 - Steady-state testing of membrane materials in presence of S
- Influence of Gasifier Constituents on Permeability
 - Effect of biomass impurities (e.g. NH₃, Cl, Na)
- > Robust Membrane Materials
 - Development of novel membrane concepts to withstand gasifier conditions

Task 1.3 Composite Membrane Synthesis and Testing

- > Fabricate multi-phase membranes
 - Metal phase to increase
 - electronic conductivity
 - Thin membrane on a support layer metals, ceramics or glass ceramics
- > 1.3.1 Glass-Ceramic Membrane Development
- > 1.3.2 Select Initial Candidate Membrane
- > 1.3.3 Select Best Candidate Membrane

Task 1.3.1 Glass-Ceramic Membrane Development


led by Schott North America

- Survey of known glass-ceramic compositional families with respect to H₂ permeability
- > Material development to evaluate and optimize the prospective materials in the Schott Glass Test Melt facility
- > Evaluate using glass as a substrate to incorporate other hydrogen transport materials such as Pd or other metals

Task 2. Membrane Reactor Process Development and Economic Analysis

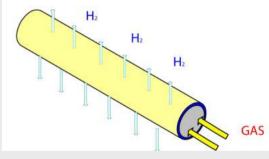
- > Develop membrane permeation model or correlation based on the measured data
- > Evaluate overall process performances for hydrogen production from biomass based on different membrane reactor process options
- > Perform analysis on process economics
- > Provide feed back and targets for the performance and cost of the membrane materials

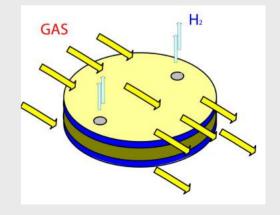
Task 3. Bench Scale Biomass Gasifier Design and Construction

- > GTI's RENUGAS[®] fluidized-bed technology
- > Make use of some components from an existing unit
- > Two inch
 - gasifier diameter
- > Oxygen/air blown

Task 4. Integrated Testing of Initial Membrane Reactor with Biomass Gasifier

- > Commission the new bench scale gasifier
- Install the membrane module to the gasifier
- > Prepare test plan and conduct testing
- > Demonstrate technical feasibility of one step hydrogen production from biomass gasifier using membrane reactor
- > Biomass feed:


wood pellet, ~2 kg/hr



Task 4.1 - 4.2 Design and Fabrication of Membrane Module Configuration

- > Conceptual design, tubular, planar, or monolithic
- > Modeling approach for sizing
- > Sealing development
- > Mechanical design
- > Assisted by Wah Chang and Schott Glass

Road Map to Successful Membrane Gasification Reactor Technology

- Flow sheet development and simulation
- Optimize operation conditions
- Economic analysis \checkmark

- - Engineering design
 - Bench scale
 - Pilot unit (GTI's FlexFuel unit)
 - Prototype demonstration

