Carbon Molecular Sieve Membrane as Reactor/Separator for Water Gas Shift Reaction DE-FG36-05G015092

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Paul KT Liu Media and Process Technology Inc. 1155 William Pitt Way Pittsburgh, PA 15238 Date: May 15, 2007 <u>PD7</u>

Overview

 Project Start Date 10/1/03 Project End Date 9/30/07 Percent Complete 80% 	 Delivery of 99.999% H₂ with high H₂ recovery ratio Fabrication of membranes/ module suitable for large scale reactor operation Demonstration of the membrane reactor process in a significant scale
 Total project funding DOE Share: \$1,530,713. Contractor Share: \$382,678. Funding received in FY05 & FY06 \$300K Funding received in FY07 \$200K No catalyst development activities due to funding limitation 	 Professor Theo T. Tsotsis University of Southern California, Catalytic membrane reactor expert Dr. Babak Fayyaz-Najafi Chevron ETC, End User Participant Dr. Hugh Stitt, Johnson Matthey, Catalyst Manufacturer

Hydrogen Production from Steam Reforming

OVERALL TECHNICAL STRATEGY

Overall Technical Approach

1. Bench-Scale Verification (1 st to 15 th month)	2. Pilot Scale Testing (16-24 th Month)	3. Field Demonstration (25 to 36 th month)
1.1 Evaluate membrane reactor: use existing membrane & catalyst via math simulation	2.1 Prepare membranes, module, and housing for pilot testing	3.1 Fabricate membranes and membrane reactors and prepare catalysts
	2.2 Perform pilot scale	3.2 Prepare site and install reactor
1.2 Experimental verification: use upgraded membrane & existing catalyst via bench	testing	3.3 Perform field test
unit	2.3 Perform economic analysis & technical	3.4 Conduct system integration study
1 3 Validate membrane and	evaluation	
membrane reactor performance & economics	2.4 Prepare field testing	3.5 Finalize economic analysis &refine performance simulation

Technology development team

End user participant

Technical Approach – Yr II

Perform <u>Bench-Top MR</u> Evaluation

- ✓WGS Catalyst evaluation under the proposed operating condition
- ✓ Perform MR experiment to verify the prediction of H_2 purity, H_2 recovery and residual CO contaminant by our mathematical model in addition to CO conversion, which was verified in Year I.

□ Tailor <u>Membrane Performance</u> for Proposed MR-based H₂ Production Process.

✓ Refine existing H₂ selective membranes required for the MR selected for scale-up.
 •hydrogen permeance, and selectivity over CO and CO

Perform Process Optimization via Simulation for Economics Analysis

- ✓Identify an optimized MR configuration and operating condition to match the reformer technology developed by our end user participant (Chevron).
- ✓ Identify a post treatment configuration to deliver >99.999% hydrogen with <10 ppm CO.

□ Conduct Pilot Test to Verify the Optimized Process

✓ Using a simulate stream and a full-scale (34"L) single membrane tube for this pilot test.

Conduct <u>Technology Validation and Economic Analysis</u> by End User

- ✓ Evaluate membrane performance
- ✓ Refine mathematical model based upon pilot test results
- ✓Conduct economic analysis

TECHNICAL ACCOMPLISHMENTS – Yr II

Experimental Verification of Mathematical Model

Our MR experimental study has delivered H_2 purity, H_2 recovery ratio, and residual CO contaminant level consistent with prediction by our model. In addition, the effect of reactor temperature has been verified experimentally.

□ Development of <u>A MR-based H₂ Production Process</u> – HiCON

The HiCON process has been developed for the small scale reformer developed by our end user participant (Chevron). A nearly complete CO conversion (i.e., 99+%) can be realistically achieved in contrast to $\sim70\%$ conversion by HTS and $\sim95\%$ by HTS + LTS with the conventional reactors.

Optimization via Simulation

Process optimization study demonstrates that 97-99% H₂ purity and 98-75% H₂ recovery can be accomplished.

□ Development of A Simple & Cost Effective Polishing Step

Instead of PROX, a simple adsorptive process can be installed as a polishing step for HiCON. Thus, 99.999% H_2 purity and <10 ppm CO can be accomplished. Our preliminary economic analysis indicates nominal cost, e.g., 2-4¢/kg H_2 .

□ Facility & Safety

A barricade has been established ready for performing the proposed HiCON process at a pilot scale.

In short, we have completed the bench top experimental study and mathematical simulation. The HiCON process has been developed to meet the PEM fuel spec. We are now ready for pilot testing to be performed during the remaining FY2007.

M&P Ceramic MEMBRANES - Low cost

Our Commercial Ceramic Membranes/Bundles and their Substrate

M&P Emerging Inorganic Membranes

M&P's Core Technology: Thin film deposition on porous substrates

Carbon Molecular Sieve (CMS) Membranes

CMS Membrane Performance Upgrading – Yr II

Accomplishment: Enhanced H₂/CO & H₂/CO₂ selectivities without sacrificing H₂ permeance

During Yr II we have tailored our CMS membrane with the properties above to suite the proposed MR application requirements. Its thermal, hydrothermal and chemical stability under the proposed application environment was demonstrated in Yr I. Media and Process Tech Inc.

<u>CMS Membrane:</u> Material Stability at a Pilot Test

Membrane performance is stable in a 100 hour challenge test conducted at a refinery pilot facility using VGO hydrocracker off-gas in the presence of significant H_2S , NH₃, and higher hydrocarbon contamination.

Gas Stream Compositions, Stage Cut and H₂ Recovery During the VGO Hydrocracker Pilot Test

At time = 3 hours					
Composition [%]		H ₂ /Slow			
Gas	Feed	Reject	Permeate	Selectivity	
H_2S	5.2	32.0	0.03	163	
H ₂	89.9	38.9	99.88	1	
C ₁	2.1	12.2	0.08	123	
C ₂	0.88	54	54 0.01		
C ₃ +	1.88	11.6	ND	>1,000	
	Stage Cut 85%				
	H ₂ Recovery 92%		2%		

v	0	ť			
At time = 100 hours					
Concern Composition [%]			[%]	H ₂ /Slow	
Gas	Feed	Reject	Permeate	Selectivity	
H_2S	4.8	24.5	0.16	74	
H ₂	90.8	50.6	99.70	1	
C ₁	1.9	9.9	0.06	123	
C ₂	0.81	42	0.01	~600	
C ₃ +	1.66	10.7	ND	>1,000	
Stage Cut 80%					
H ₂ Recovery 85%				<mark>5%</mark>	

Experimental Verification:

Mixture Separation vis CMS Membranes

The performance of our CMS membrane was demonstrated in mixture separation using a synthetic reformate shown above. Further our mathematical model can reliably predict the permeate composition vs H_2 recovery.

Water Gas Shift Reaction Kinetic Study

Cu/Zn catalyst: CO Conversion vs Pressure

Bench Top Membrane Reactor Study: Experimental vs Simulated

W/F: Ratio of Catalyst Dosage to Feed FlowRate

Our prediction on CO conversion, H_2 recovery and CO residual level was verified with experimental results obtained from our bench top membrane reactor.

Bench Top Membrane Reactor Study

Experimental vs Simulated & Verification of Mathematical Model

Our prediction on H2 purity and effect of temperature was verified with experimental results obtained from our bench top membrane reactor.

Performance of Our Proposed Membrane Reactor Process via Mathematical Simulation, basis: 100 kg/day H₂ feed

Our proposed HiCON can deliver 96-99% H_2 purity with 98-77% H_2 recovery with a modest membrane surface area requirement.

Preliminary Economic Analysis: Post Treatment Capital and Operating CostTarget: 99.999% purity H2Basis: 1500 kg/day H2 production

Case A: Temperature Swing Adsorption (TSA) Integrated with Membrane Reactor				Bulk
Adsorption temperature [C]			50	Hydrogen
Pressurization cycle [min]			5	Cost
Adsorption Cycle [min]			175	at Production
Temperature Swing Regeneration [min] 180				Point
		via Methane		
Feed Purity [%]	99	97	93	Steam
Adsorber ID [in]	12.6	15.7	19.8	Reforming
Adsorber Height [ft]	$1 - 2.4/Ka H_{o}$			
Capital Cost* [\$]	for 22-600			
Capital Recovery Cost [¢/Kg H ₂]	4.1	6.5	10.1	tons/day with
Hydrogen Yield [%]	~100	~100	~100	\$3.5-7/GJ NG

* Example of Capital Cost Estimate: for 99% purity case			
For Quantity of 4 Adsorbers			
Purchase Price of Pres Vessels, fob	\$42,032		
Purchase Price of Zeolite, fob	\$2,162		
Purchase Price of Support, fob	\$39		
Delivery	\$2,212		
Installation	\$51,090		
Purchased, Deliverd & Installed	\$97,535		
Piping, Valving & Instumentation	\$19,507		
Total Fixed Capital Investment	\$117,042		
Other One-Time Costs	\$17,556		
Other One-Time Costs \$134,598			
Not including heating equipment for TSA.			

Our preliminary analysis indicates that the incremental cost for the developed post treatment scheme is very insignificant

deliver nearly 90% hydrogen recovery with 99+% purity accoarding to our simulation.

BENCHMARKING: EXISTING PSA/PROX

Product Stream from Our Enduser Reformer : 10 bar, 10-3% CO

Our HiCC	ON Process					
$\begin{array}{ccc} CH_4: & 1 \\ H_2: & 0.2 \\ CO: & 0 \\ CO_2: & 0 \\ H_2O: & 3 \\ 800^\circ C \\ 10 \text{ bar} \end{array}$	SMR Small scale	CH_4 : 2.5% H_2 : 52.3% CO: 8.9% CO_2 : 5.6% H_2O : 30.8% 800°C 10 bar	Membrane Reactor WGS (LTS) H ₂ Separation	H ₂ : 98% CO ₂ &CH4:2% CO: ~30 ppm 30°C 1 bar	Post Treatment Simple Adsorption	99.999% H ₂ <10 ppm CO

Benchmarking

Performance Criteria	Conventional/PSA	OUR HICON
CO Conversopm [%]	75 - 95	99
H ₂ Recovery [%]	70 - 85	~90
Product, H ₂ , pressure [psi]	150	15
Reject, CO ₂ , pressure [psi]	15	150
Capital Cost [\$]	TBD	TBD

Economic analysis is under preparation currently, and will be presented in the meeting.

MEMBRANES, BUNDLE AND MODULE PREPARATION

Pilot Scale Module of CMS/ceramic Membrane (1.5" diameter and 30"L)

Our full-scale ceramic membrane __ module (3 - 4" dia, prototype) for gas applications

• The pilot scale module is currently under a pilot test for hydrogen recovery.

• The full-scale single tube (30"L) will be used for our pilot scale MR test in FY2007.

M&P CMS H₂ SELECTIVE MEMBRANES – PILOT TEST Engineering Demonstration Facility, Startech Environmental Corp.

<u>Performance Results</u> 50/50 H2/CO at 18 SCFM and ~100°C 87/13 H2/CO at 82% H2 Recovery for Stage 1 at 9.5 barg >99% H2 at 93% H2 Recovery for Stage 2 at 6.8 barg 2 ton/day Plasma Conversion System (based upon MSW)

200 SCFM PCG (plasma converted gas)

MEMBRANE REACTOR: PILOT SCALE TESTING FACILITY

for a Full-Scale (34"L)Single Tube Membrane Reactor

We have designed and constructed this barricade to perform the membrane reactor study involving high temperature and high pressure CO & H_2 . The single full-scale membrane tube (34"L) as a reactor is housed within this barricade. Its temperature is controlled in-situ by an electric tube furnace. Unique safety features include:

- The barricade can be constantly purged with inert gas. Any leak in H₂ and CO can be detected via the purge gas analysis.
- The barricade has a water leg to allow the surge under the worst case scenario: explosion.
 Media and Process Tech

Future Work

Remainder of FY 2007

- Complete pilot scale testing using a single, full-scale hydrogen selective membrane and synthetic feed to demonstrate the optimized HiCON process.
- Complete the preliminary economic analysis for hydrogen production via the developed HiCON process by our end user.

FY 2008 and Beyond

Depending upon the budget availability, the field demonstration with a pilot scale unit as originally planned will be pursued.

SUMMARY

Our Project Team Mission

Our project team composed of a membrane manufacturer, a catalyst manufacturer, an end user and an academic institute is well positioned to overcome the commercialization barriers associated with the membrane reactor while the distributed hydrogen production is an ideal platform to showcase the MR technology.

Our Accomplishments

- We have completed the bench top experimental study and mathematical simulation to demonstrate our HiCON process to deliver 99+% CO conversion with 97-99% purity and 98-75% H2 recovery via a simple MR process, uniquely suitable for the distributed hydrogen production.
- Although membranes are not ideal to deliver 99.999% purity with trace CO contaminant. Our study indicates that a cost acceptable post treatment unique to our proposed process can achieve this target. This in conjunction with our HiCON process offers a practical and economically viable process to meet the stringent feed quality requirement for PEM.
- We have established a **pilot scale testing facility** for performing a pilot scale test to verify the optimized HiCON process using a full-scale membrane tube with synthetic feed, which is expected to be completed by the end of FY 2007.

In short, with the budget available, we anticipate to complete the minimum tasks required to take this HiCON process to the next step for field demonstration. Media and Process Tech Inc.

ACKNOWLEDGEMENT

US DOE Project Managers

- Arlene Anderson
- Carolyn Elam

Our Project Team Members

- •. Theo T. Tsotsis, University of Southern California
- Babak Fayyaz-Najafi & John Wind, Chevron ETC
- Hugh Stitt, Johnson Matthey
- Richard J. Ciora, Jr. Media and Process Tech Inc.

