# Integrated Ceramic Membrane System for Hydrogen Production

**PRAXAIR** 



Cooperative Agreement: DE-FC36-00GO10534

Joe Schwartz Prasad Apte Praxair - Tonawanda, NY

Ashok Damle
Research Triangle Institute
Research Triangle Park, NC



## DOE Annual Merit Review Meeting May 15, 2007



This paper was written with support of the U.S. Department of Energy under Contract No. DE-FC36-00GO10534. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted paper. This presentation does not contain any proprietary or confidential information.

Project ID PDP-10



## **Program Timeline**

| 7/00 | ) - 2/0 | 2 | 2/03- | 3/06 | 3/0 | 07-8/08 |   |
|------|---------|---|-------|------|-----|---------|---|
| Ph   | nase I  |   | Phas  | e II | F   | hase II | I |
|      | 1       | 2 | 3 4   | 5    | 6   | 7       | 8 |

#### Phase I - Feasibility

- 1 Selected Two-Stage Process with Pd Membrane
- 2 Assessed Economics vs. Current Options

#### Phase II - Hydrogen Membrane Development

- 3 Select Alloy and Substrate
- 4 Membrane Production and Testing
- 5 Verify Reactor Performance and Update Process Economics

#### Phase III - System Design and Testing

- 6 Demonstrate Integrated Membrane/Water Gas Shift Performance
- 7 Verify System Performance and Update Process Economics
- 8 Develop Commercial Offering





|         | Committed | Requested | Spent    |
|---------|-----------|-----------|----------|
| DOE     | \$100,000 | \$313,697 | \$ 9,369 |
| Praxair | \$ 33,333 | \$104,566 | \$ 3,123 |
| TOTAL   | \$133,333 | \$418,263 | \$12,492 |

No funding in FY 2006 No activity in FY 2006

**Program restarted in March 2007** 



## **Barriers Addressed by HTM**

#### > A. Reformer Capital Costs

- Process intensification (ex. combine WGS and PSA)
- Reduced capital cost for the entire system
- Focus on substrates with much lower cost than commercially available porous metals and ceramics

## > B. Reformer Manufacturing

- Develop a standard design
- Take advantage of DFMA and multiple identical units

## > C. Operation and Maintenance

- Praxair has an extensive remote operations network
- Standard design will allow for standard O&M

#### > F. Control and Safety

 Safety is the top priority and essential to the success of any commercial product



## **Barriers Addressed by HTM**

## K. Durability

- Ceramic substrate eliminates metal/metal interactions
- Close thermal expansion match allows for thermal cycling

#### L. Impurities

- Effects of CO and H<sub>2</sub>S are being studied
- CO is important, but sulfur can be removed upstream

#### > M. Membrane Defects

- Experience in OTM program has led to a good seal
- Chemical deposition techniques being improved

## N. Hydrogen Selectivity

- Pd membranes have very high selectivity
- A good seal and leak-tight membrane ensure selectivity



## **Barriers Addressed by HTM**

#### O. Operating Temperature

- Pd membrane and WGS operate at similar temperatures
- WGS temp. is preferred to SMR temp. for maximum yield

#### > P. Flux

 Consistent improvement in reducing film thickness, increasing porosity, decreasing pore size, and increasing flux

## Q. Testing and Analysis

- Testing targeted to determine cost/performance tradeoffs
- Lead to real-world commercial membrane unit design

#### > R. Cost

- Pd cost is fixed by layer thickness
- Producing low-cost substrate is the key to reducing cost
- High commercial substrate cost is a significant barrier for HTM

## **Partners**



#### Praxair

- Leader in hydrogen purification, production, and distribution
- Leader in electroceramic materials dielectrics, superconductors, ...
- Overall program lead
- Substrate development
- Reactor design
- Membrane testing
- Process development and economics

## Research Triangle Institute

- Palladium coating
- Membrane testing

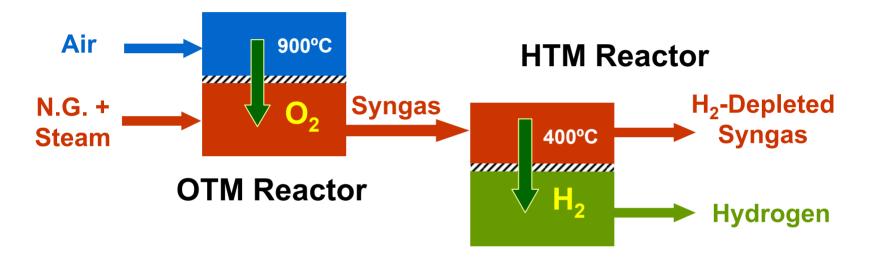
#### > Joint

- Membrane Production
  - Unique opportunity to integrate substrate and alloy development
  - Iterative process

## **Objectives**



## Program - Develop a low-cost reactive membrane based hydrogen production system

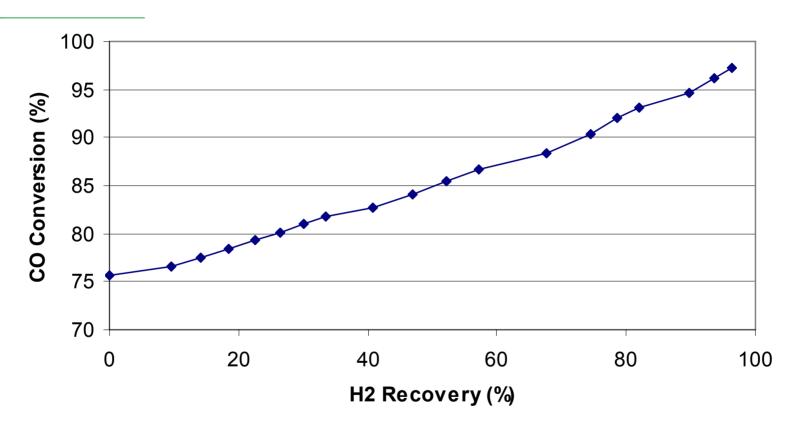

- Use existing natural gas infrastructure
- High thermal efficiency
- Serve both the transportation and industrial markets
  - Industrial market provides immediate opportunities
  - Gain valuable operating experience before fuel cells arrive

## Phase III – Integrate HTM with WGS

- Low-cost hydrogen production, separation, and purification
- Demonstrate HTM performance in reactive environments
- Develop versatile system that can be combined with any syngas generation method for improving hydrogen production, especially at distributed scale

## OTM/HTM Concept **Preferred Process - Sequential Reactors**






**OTM Reactor** Synthesis gas generation  $CH_4 + \frac{1}{2}O_2 \rightarrow 2H_2 + CO$  $CH_4 + H_2O \rightarrow 3 H_2 + CO$ 

HTM Reactor Water-gas shift reaction  $CO + H_2O \rightarrow H_2 + CO_2$ **Hydrogen Separation** 



## **Enhanced CO Conversion**



 Simulation results show enhanced CO conversion is possible using a hydrogen membrane
 HTM/WGS at 400°C, 150 psig, syngas composition from OTM module



## Program Approach

- Phase I Define Concepts
  - Techno-Economic Feasibility Study
  - Define Development Program
- Phase II Bench-Scale HTM Development
  - Develop and Test HTM Alloy and Substrate
- Phase III System Design and Testing
  - Integrate HTM and WGS in Single Tube Tests
  - Define Mass Production Methods
  - Define Commercial System





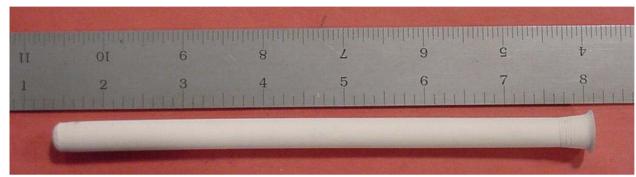
## Process Development

- Demonstrate HTM performance in membrane reactor
  - Integrate HTM with water gas shift
- Develop conceptual design for full-scale unit
- Define manufacturing process for producing reactors

#### Process Economics

- Confirm membrane and process are cost-effective
- Assess alternative technologies
- Go/No Go decision based on technoeconomic viability



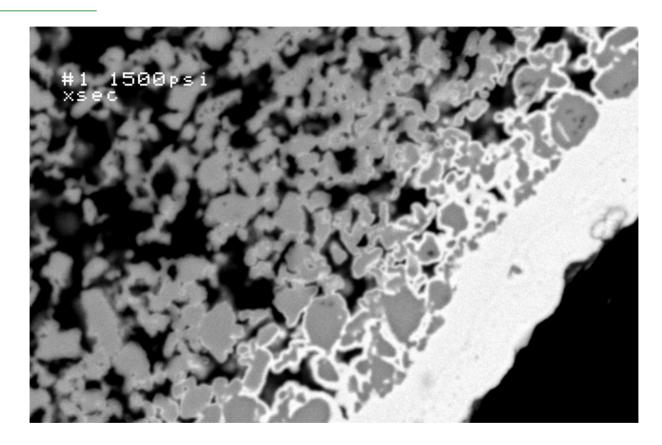

## Palladium Membrane Targets

|                            | 2006  | 2010  | 2015    |
|----------------------------|-------|-------|---------|
| Flux (scfh/ft²)            | > 200 | 250   | 300     |
| Cost (\$/ft <sup>2</sup> ) | 1500  | 1000  | < 500   |
| Durability (yrs)           | < 1   | 3     | > 5     |
| △P Operating Capability    | 200   | 400   | 400-600 |
| Hydrogen Recovery          | 60    | > 80  | > 90    |
| Hydrogen Quality           | 99.98 | 99.99 | > 99.99 |

- Flux based on 20 psid hydrogen pressure at 400°C
- \$/scfh is our most important consideration \$4/scfh in 2010



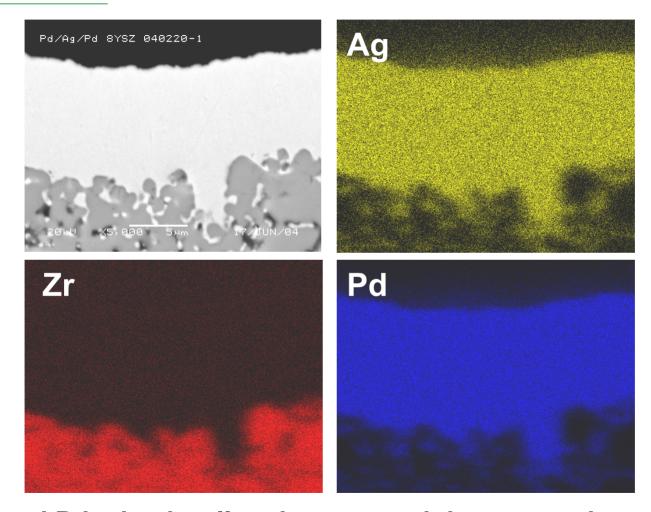
## **Low-Cost Ceramic Substrate**






- Modified zirconia designed to match thermal expansion of palladium alloy and to have high strength and stability
- Layered structure produced using Praxair's patented isopressing technique for producing porous ceramics
- Layer adjacent to membrane has smallest pore size
- Closed-end tube allows for expansion and simplifies sealing
- Substrate is coated using electroless plating

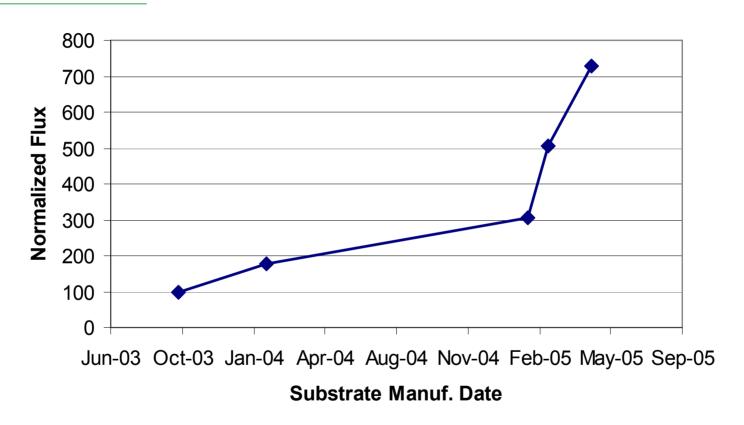



## Pd-Ag Film Structure



Surface treatments produced very small surface pores and larger pores in the bulk layer

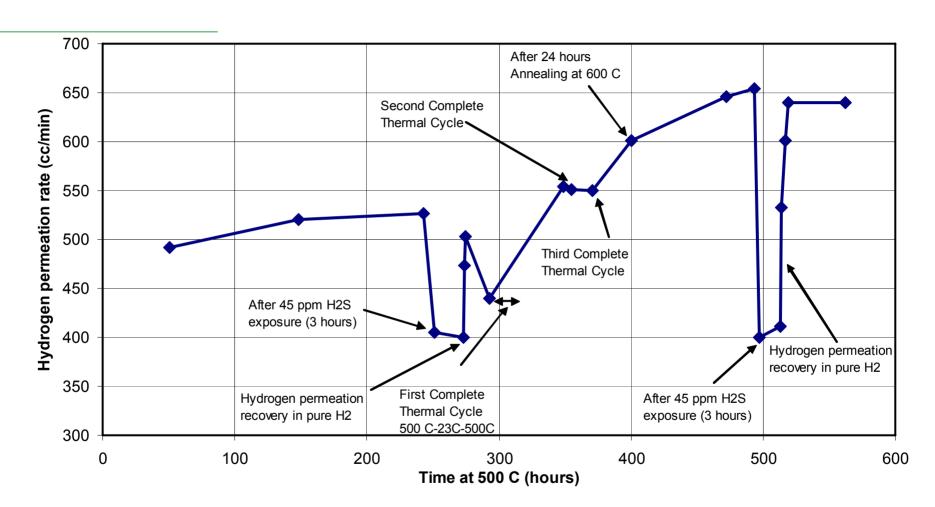



## **Membrane Composition**



> Ag and Pd mixed well and penetrated deep enough to adhere

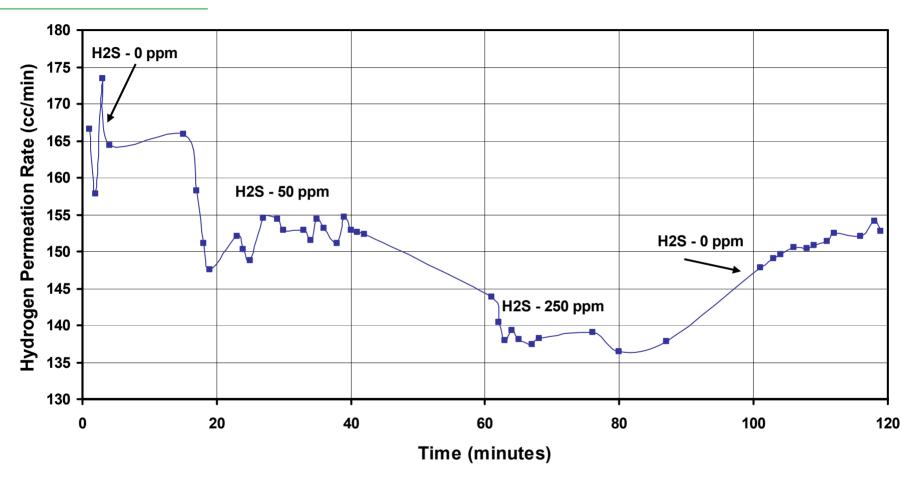



## Pd-Ag Membrane Flux



- Continuous improvement in membrane performance while maintaining or reducing cost
- Significant step-change improvement in early 2005

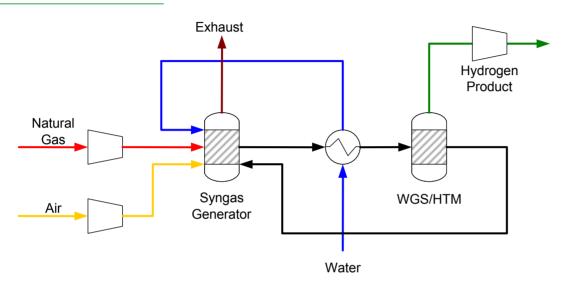



## Effect of H<sub>2</sub>S on Pd-Ag

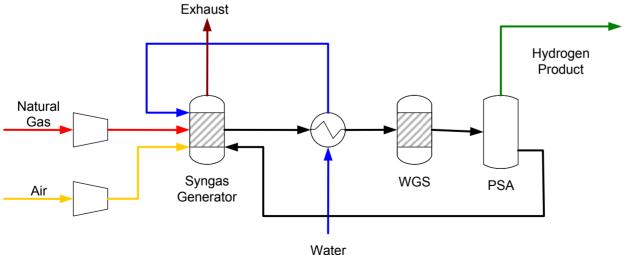


#### Excellent response to thermal cycling




## Effect of H<sub>2</sub>S on Pd-Cu

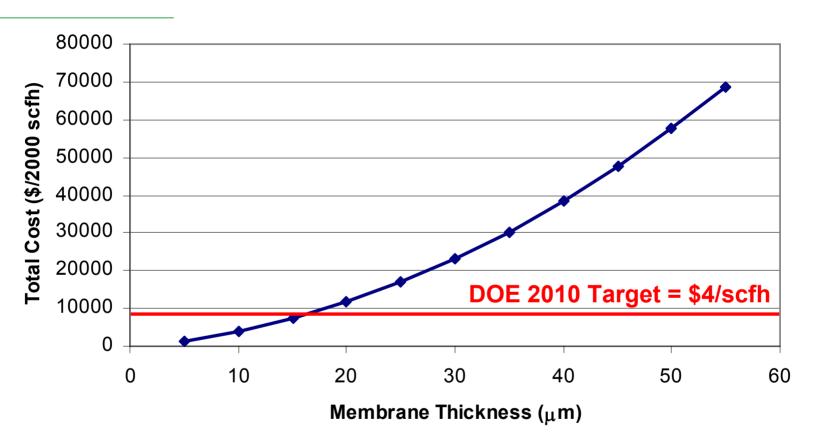



- > H<sub>2</sub>S reduced flux within minutes
- Most of lost performance was recovered when H<sub>2</sub>S was removed

# Process Flow Diagrams for Cost Comparison






Hydrogen Membrane Process



Shift Reactor/PSA Process



## Membrane Module Cost



- Assumes an average flux of 100 scfh/ft² for a 10-μm HTM
- Assumes flux is inversely proportional to thickness
- Assumes substrate, coating, and other module costs of \$100/ft²
- Pd cost of \$360/oz and silver cost of \$14/oz (prices as of 4/10/07)

## Hydrogen Cost Reduction by HTM Reactor



| Parameter                    | HTM Reactor | PSA/WGS  |
|------------------------------|-------------|----------|
| Capital Cost                 | \$8,000     | \$50,000 |
| Cost (\$/kg H <sub>2</sub> ) | \$0.081     | \$0.508  |

#### Assumes:

- 2000 scfh, 70% utilization
- 30% annual capital cost recovery factor
- DOE 2010 target is met

#### HTM reactor enables possible capital cost savings

- Capital cost savings becomes more significant as utilization decreases
- > The cost of hydrogen compression is an important factor
  - HTM is likely to provide a lower compressor suction pressure at sufficient recovery
  - HTM has potentially higher purity
  - HTM has an advantage if product pressure is not important





- Continue performance improvement
- Demonstrate performance in integrated WGS/HTM reactor
- Design low-cost reactor and membrane toward meeting hydrogen cost goal of \$4/scfh in 2010
- Confirm that HTM has the potential to be the lowest-cost option, or pursue other technology instead



## **Conclusions**

- Pd-based membrane tubes can be produced at a relatively low cost using Praxair's substrates and manufacturing techniques
- Membrane and substrate properties have continuously and significantly improved
- 2010 cost goal of \$4/scfh will be difficult to achieve and probably cannot be done with current high-cost substrates
- HTM must provide advantages by integration with WGS to beat low-cost PSA for hydrogen purification and production