

Extending today's resources... creating tomorrow's choices

Hydrogen Generation from Electrolysis

Steve Cohen Distributed Energy Systems May 15, 2007

PDP13

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Original Start March 2004
- Current Scope
 - May 2007 to Dec 2007

Budget

- Total Project Funding \$2.2M
 - 50% Cost Share
- \$0K DOE Funding for FY06
- \$760K DOE Funding for FY07

Barriers

- G. Capital Cost
- H. System Efficiency
- J. Renewable Electricity Generation Integration

Objectives

- Establish Pathway to Larger PEM Systems
- 100 kg/day with Growth to 500 kg/day
- Emphasis on Capital Cost and Energy Efficiency

Table 3.1.4 Technical Targets: Distributed Electrolysis Hydrogen Production ^{a,b,c}					
Characteristics	Units	2003	2006°	2012	2017
		Status	Status	Target	Target
Hydrogen Cost	\$/gge	5.15	4.80	3.70	<3.00
Electrolyzer Capital Cost ^d	\$/gge	N/A	1.20	0.70	0.30
	\$/kW	N/A	665	400	125
Electrolyzer Energy Efficiency ^f	%	N/A	62	69	74
	(LHV)				

System Design and Analysis

- Design Trade Studies
- Conceptual Design

Design Trade Studies

- Build on Previous Modeling Work
- Identify the Best Candidate Solutions, Taking Into Account Interactions Among Subsystems
- Trade Criteria Driven by DOE Technical Targets
- Focus Areas
 - Cell Stack Size, Configuration, Number
 - Cell Stack Power Supply Topology
 - Drying Efficiency
 - Water Management
 - Thermal Management

Cell Stack Trade Study

- Baseline vs. Bipolar Plate Design
- Size vs. Number

Commercial Baseline

Parts Count: 29 per cell

Next Generation
Parts Count: 9 per cell
Unit Cell

Power Supply Trade Studies

- Optimize Voltage and Current
 - Efficiency
 - Cost
- Current and Upcoming Topologies
 - Cross Platform Power Supply
 - o Flex Phase
- Interface with Renewable Sources

Flex-Phase[™] module

Drying Efficiency Trade Study

- Current Loss up to 10% H2 Gas During Regeneration Cycle
- Target 3% or Less Regeneration Loss
- Examine New Techniques at Larger System Size

Water Management Trade Study

- Discrete Systems for Each Cell Stack vs. Combined Systems
 - Larger Quantity of Two Phase Flow
 - Larger Pressure Vessels
 - Cost
 - Code Requirements

• Thermal Management Trade Studies

- Ventilation vs. EX Components
- Heating and Cooling Requirements

Conceptual Design

- Enable Cost and Efficiency Improvement Estimates, Compared to Current Values
- Starting Point for Cost-reduction Discussions with Suppliers
- Basis for Future Detailed Design
- Functional Architecture
- Physical Architecture

Functional Architecture

- P&ID
- Top Level Electrical
- Preliminary Hazard Analysis
- Sub-system Design Intent
- Sub-system Interconnection

Physical Architecture

- CAD Model Layout and Mounting
- Component Size and Weight
- Mass Flow Analysis

Summary

- 100 kg/day Pathway to Larger PEM Systems
 - Higher Efficiency
 - Lower \$/gge, \$/kW
- Design Trade Studies to Identify Best Options
- Conceptual Design
 - Provide More Accurate Cost Reduction Estimates
 - Basis for Future Detailed Design