

Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

Greg Tao, Mike Homel, Bruce Butler, and Anil Virkar Materials & Systems Research Inc., Salt Lake City, UT

2007 DOE Hydrogen Program Annual Review May 15, 2007

Project ID#: PDP 14

Overview

Timeline

- Project started: 02/10/2006
- Project ends: 07/31/2008
- Percent completed: 40%

Budget

- Total budget funding
 - DOE \$2,480k
 - Contractor \$ 620k
- Funding received in FY06
 \$452k
- Funding for FY07
 - \$ 1,000k

Barriers

Hydrogen generation by water electrolysis

- G Capital cost
 - Low-cost, durable high-temperature materials development
 - Lower operating temperature
- J Renewable integration
- K Electricity costs

Partners

- University of Alaska Fairbanks anode supports fracture mechanism and modeling residual stresses (S. Bandopadhyay; N. Thangamani)
- University of Missouri-Rolla cathode & seal materials development (H. Anderson; R. Brow; Y. Sin; and S. Reis)
- University of Utah interconnects development (A. Virkar)

Objective

Overall Objective	 To develop a low-cost and highly efficient 5 kW SOFC-SOFEC hybrid co-generating both electricity and hydrogen to achieve the cost target < \$3.00/gge when modeled in a 1000 gge/day hydrogen production. The project focuses on materials R&D, stack design & fabrication, and
	system design & verification
2006	 SOFC-SOFEC cell & stack development
	 Materials development (electrodes & seals)
	 Stack design & development
	 Cell fabrication
	 Proof-of-concept hybrid stack verification
2007	 5 kW SOFC-SOFEC hybrid system development
	 Materials development and application (electrodes & seals)
	 Hybrid system design
	 BOP components design & development
	— Fabrication
	 Hydrogen generation cost analysis

Approach

Background

A Solid Oxide Fuel-Assisted Electrolysis Cell (SOFEC) directly applies the energy of a chemical fuel to replace the external electrical energy required to produce hydrogen from water/steam; decreasing the cost of energy relative to a traditional electrolysis process

Concept of Hybrid SOFC-SOFEC Integral System

- Pure H₂ & e⁻ generated from fuel, steam, and air
- SOFECs produce pure hydrogen
- SOFCs generate electricity; increase H₂ production rate
- Thermal integration improves system efficiency

SOFEC Cathode Materials Development

Chemical analysis of LST/LSCM

Element	Wt %	At %	Element	Wt %	At %
O K	15.29	49.09	ОК	24.16	63.03
SrL	10.82	6.35	SrL	11.06	5.27
TiK	15.89	17.05	TiK	13.68	11.92
LaL	47.83	17.69	LaL	41.97	12.61
CrK	5.96	5.89	CrK	5.35	4.29
MnK	4.21	3.93	MnK	3.8	2.89
Total	100	100	Total	100	100

Wt% of $La_{0.8}Sr_{0.2}TiO_{3-\delta}$ and $La_{0.8}Sr_{0.2}Cr_{0.5}Mn_{0.5}O_{3-\delta}$

- The LST/LSCM sintered at 1200°C has no significant variation of composition between grain and grain boundary
 LST(0.8/ Wt 0.2/1) W
- The active diffusion process appears to be started between 1100 and 1200°C

		La	Sr	Ti	Cr	Mn	Ο
LST(0.8/ 0.2/1)	Wt/mol	138.9	87.6	47.9			16
	Wt%	49.5	8	21.2			21.3
LSCM (0.8/0.2/ 0.5/0.5)	Wt/mol	138.9	87.6		52	55	16
	Wt%	48.3	7.6		11.3	12	20.8

SOFEC Cathode Materials Development

SOFC-SOFEC Anode Substrate Development

- Estimated effects of temperature and load on hardness and fracture toughness of the rectangular and button cells
- Investigated microstructure of the membranes
- Investigated Young's modulus of the membranes at RT
- Studied thermal expansion
- Initiated modeling of the indentation stress distribution
- Designed and fabricated high temperature Equibiaxial flexural strength fixture
- Fabricated an equipment for measuring high temperature modulus using Impulse Excitation technique (IET)

SOFC-SOFEC Anode Substrate Development

Hermetic Seals Development

More than 60 'invert' glass compositions have been evaluated

<u>"Invert" silicate:</u> <u>Glasses with</u> SiO₂<45 mole%

<u>Compositions based on:</u> <u>Pyrosilicate</u> <u>and</u> <u>Orthosilicate</u>

Hermetic Seals Development

Thermomechanical compatibility is a significant property design target

Thermochemical stability depends on glass composition

Cathode Characteristics in SOFC/SOEC/SOFEC Modes

Proof-of-concept Hybrid Stack Testing

Hybrid stack testing station

- Station capable of operating in three modes: SOFC/SOEC/SOFEC
- Capable of 40+ cell stack
- Capable of hybrid stack
- Automation testing
- Self protection in case of power outage
- Stack IR evaluation
- Gas chromatograph analysis
- Hydrogen production measurement

kW Class SOFC-SOFEC Hybrid Stack Power Generation

kW Class SOFC-SOFEC Hybrid Power & H₂ Cogeneration

kW Class SOFC-SOFEC Hybrid Power & H₂ Cogeneration

H₂ Production Rate: 270 standard liters per hour, AND, Net Power Output: 130 Watts

5 kW Hybrid System Design

Optimization of System Configuration

2 Modes of Operation:

- Co-generation
 - Hybrid stacks self driven, dedicated SOFC stacks in series
 - Electrical load following independent of hydrogen production rate
- Electrical Power Production
 - Series/parallel configuration of hybrid and dedicated stacks
 - Allows for peak power output with dedicated and hybrid stacks each at optimal current density

Future Work (FY07 – FY08)

• <u>Materials Development</u>

- Cathode optimization and long-term stability investigation in reducing & oxidizing atmospheres
- ➢ G#50 in-stack implementation, long-term & thermal cycling tests
- Investigation of fracture mechanism and modeling residual stresses
- Continuous of investigating effects of residual/chemical/applied stresses on the mechanical integrity of the SOFC-SOFEC
- <u>SOFC-SOFEC Hybrid Stack Optimization</u>
 - Evaluate new interconnect design with enhanced thermal/fluid management
 - Evaluate stack design integrated with heat exchanger
- <u>5 kW Hybrid System Design and Evaluation</u>
 - ➢ BOP components design and fabrication
 - ➤ 5 kW hybrid system assembly and evaluation
 - Implementation of hydrogen production cost analysis using H2A model

Project Summary

Relevance:	Investigate an alternative approach to provide low-cost and highly efficient distributed co-production of electricity and hydrogen
Approach:	Develop a 5 kW SOFC-SOFEC hybrid system based on innovative materials development and system design research to co-generate hydrogen and electricity
Technologies Accomplishments and Progresses:	Developed/characterized perovskite-type oxides (p and n-type) cathode materials over a wide range of oxygen activities; studied the influences of combined stresses (residual, chemical, thermal and applied stresses) for understanding and improving SOFC-SOFEC structures in service conditions; developed hermetic seal materials; characterized the selected materials in SOFC/SOEC/SOFEC modes; proof-of-concept kW hybrid stack co-generating hydrogen and electricity; designed a 5 kW hybrid system
Proposed Future Research:	Continue developing electrodes and sealing materials; implement mechanical/thermal analyses of anode supports; optimize the 5 kW hybrid system; fabricate and evaluate BOP components; implement system experimental investigation and cost analyses

