High Performance Flexible Reversible Solid Oxide Fuel Cell

Jie Guan, Badri Ramamurthi, Jim Ruud, Jinki Hong, Patrick Riley, Dacong Weng, Nguyen Minh

GE Global Research Center May 15, 2007

imagination at work

DE-FC36-04GO14351 Project ID:PDP15

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Project start date: October 2004
- Project end date: November 2006
- Percent complete: 100%

Budget

- Total project funding
 - -DOE share: \$1,252,683
 - -Contractor share: \$616,993
- Funding received in FY05: \$575,198
- Funding for FY06: \$677,485

Barriers

- Barriers addressed
 - K. Electricity Costs
 - G. Capital Costs
 - H. System Efficiency

Objectives

- Demonstrate a single modular stack that can be operated under dual modes
 - -Fuel cell mode to generate electricity from a variety of fuels
 - -Electrolysis mode to produce hydrogen from steam
- Provide materials set, electrode microstructure, and technology gap assessment for future work

Approaches

Technical focuses:

- Reversible electrode modeling
- Electrode compositions and microstructure engineering

Key challenges:

- Performance for cost and efficiency
- Low degradation for reliability

imagination at work

Stack Configuration

Oxygen Electrode Performance

- Screened several lanthanum strontium manganites (LSM), lanthanum strontium ferrites (LSF), and lanthanum strontium cobalt iron oxides (LSCF) as oxygen electrodes
- Under both modes, electrode performance increases in the order of LSCF>LSF>LSM/YSZ

Oxygen Electrode Performance Stability

 Excess performance degradation was observed with LSM/YSZ as the oxygen electrode in electrolysis mode (SOEC) mainly due to electrode delamination

 LSCF and LSF showed better performance stability in electrolysis mode than LSM/YSZ electrode

Oxygen Electrode Analysis

Cr transport and accumulation in LSCF electrode

Sr migration and depletion?

Performance Stability Improvement

Bare Stainless Steel Interconnect with LSCF Electrode

Coated Interconnect with LSCF Electrode

 No significant difference in degradation rate between cells held under a constant load in fuel cell mode compared with cells that were held at OCV

- The dominant degradation mechanisms were likely to be thermally activated
- Coated interconnect significantly improved the performance stability

Oxygen Electrode Reversibility

Non-symmetrical vacancy model

- Vacancy diffusion and activation at the oxygen electrode/electrolyte interface are different for fuel cell mode and electrolysis mode
- Higher current densities can lead to depletion of vacancies at the interface in electrolysis mode
- Experimental data matched well with non-symmetrical vacancy model

Hydrogen Electrode Performance

- Higher polarization losses predicted under electrolysis mode mainly due to difference of diffusion
- Thinner electrode and smaller particles preferred

Conditions: T = 800 C Fuel = 50/50 H_2/H_2O Active layer thickness= 16 µm Active layer particle size=0.8 µm

Region I – H_2/H_2O diffusion and reaction limited Region II – Reaction limited Region III – Ion conduction and reaction limited

Hydrogen Electrode Internal Reforming

800

X is the distance from the fuel inlet along the channel and L is the total channel length magination at work

- At 800°C, internal reforming kinetic was fast
- CH₄ conversion measured (gas chromatography) > 98%, agrees well with thermodynamic prediction
- Thermodynamic calculations defined carbon deposition boundary

Performance with Internal Reforming

- Performance (I-V curve) with internal reforming similar to that with 64% H₂/36%N₂ fuel
- Improved cells efficiency and potential system simplification with internal reforming

Module Performance Improvement

- LSCF performed better than LSM/YSZ electrode
- Substantial degradation rate reduction achieved with LSCF oxygen electrode in electrolysis mode
- Improved performance with electrode material selection and process engineering

Multi-cell Stack Performance

- Built and tested several multi-cell stacks under power generation and electrolysis mode for more than 1000 hrs
- Performance improved with process control and contact resistance reduction

Stack Performance Demonstration

- 10-cell stack generated
 >6 SLPM H₂ with ~1.1
 kW electrical input
- Excellent area specific H₂ production capability (>4.5cc/min/cm² at cell voltage less than 1.3V)
- >1000 hour dual mode operation

Cost of Hydrogen Estimate

Central SOEC CoH Sensitivity

imagination at work

- \$3.7/kgH₂ for distributed size (1500 kg H₂/day)
- \$2.7/kgH₂ for central station size (150,000 kgH₂/day) due to capital and O&M cost reduction
- Integration of heat and steam production within an industrial plant can reduce CoH
- CoH is most sensitive to the cost of electricity (CoE)

Electrolysis CoH Comparison

Alkaline

- -Low stack cost
- -High feedstock cost

• PEM

- -Large stack cost
- Effect of high pressure not considered

• SOEC

- -Lowest feedstock cost
- –Low CoH due to reduced feedstock cost

SOEC Technology Assessment

Advantages:

naaination at work

- High thermodynamic efficiency
- Fast electrode kinetics at high temperature
- Low electrical energy demand

Challenges:

- Stack materials for performance and stability
- Reliable seals for efficient hydrogen collection
- Electrolyzer design and components fabrication for cost reduction
- System design for heat integration
- Enabling technologies such as high temperature recycle blower and high temperature heat exchanger

Preliminary RSOFC Technology Roadmap Technology **Technology Demo** Feasibility System Optimization Small System **POC Demo** •Design •Efficiency Pressurized •High T HEXs •Dual Mode •Efficiency •High T Recycle Blower •Reliability Cost Reduction

Component Perf. •Seals •Interconnects •Cells

Summary

Electrode development

- Performance: LSCF>LSF>LSM
- "Irreversibility" of oxygen electrode observed, associated with differences in vacancy diffusion and activation at electrode/electrolyte interface
- Internal reforming with Ni-YSZ modeled and demonstrated

Module and stack development

- Module and stack performance improved by electrode engineering
- Performance stability improved with coated interconnects
- Demonstration stack operated over 1000 hours under dual mode
- High power density of 480 mW/cm² at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power demonstrated

Technology assessment and cost estimate

- Flexibility for dual mode operation
- Potentials for low cost and high efficient hydrogen production through steam electrolysis
- Cost of hydrogen production at large scale estimated at ~\$2.7/kg H₂, comparing favorably with other electrolysis technologies
- Key challenges identified and preliminary technology roadmap generated

Acknowledgement

This research was supported in part by DOE award DE-FC36-04GO14351. This support does not constitute an endorsement by DOE of the views expressed in the article.

