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Overview

• Project start date: October 2004
• Project end date: 

November 2006
• Percent complete: 100%

• Barriers addressed
– K. Electricity Costs
– G. Capital Costs
– H. System Efficiency

• Total project funding
–DOE share: $1,252,683
–Contractor share: $616,993

• Funding received in FY05: $575,198
• Funding for FY06: $677,485

Timeline

Budget

Barriers
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Objectives

• Demonstrate a single modular stack that can be 
operated under dual modes
–Fuel cell mode to generate electricity from a    
variety of fuels

–Electrolysis mode to produce hydrogen from 
steam 

• Provide materials set, electrode microstructure, 
and technology gap assessment for future work
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Approaches
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Key challenges:
– Performance for cost and efficiency
– Low degradation for reliability

Technical focuses:
– Reversible electrode modeling
– Electrode compositions and 

microstructure engineering
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Cell Configuration

•SOFCs have the flexibility, running under power generation mode and hydrogen production mode
•High temperature solid oxide steam electrolysis can lower the electricity consumption

Fuel, CH4, H2, etc.

Oxidant, air.

Power Generation Mode

Load

e

e
CH4 + 4O2- → 2H2O +CO2 + 8e-

2O2 + 8e- → 4O2-

Hydrogen Production Mode

e

e

P
ow

er

Steam Hydrogen

Oxygen

2H2O + 4e- → 2H2 + 2O2-

2O2- → O2 + 4e-

~60   μm
~7     μm

~300 μm

Oxygen Electrode, Perovskite
Electrolyte, YSZ

Hydrogen Electrode, Ni/YSZ
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Stack Configuration

Oxygen electrode
Electrolyte

Hydrogen electrode

Interconnect (IC)

Cell

Interconnect (IC)

Cell Module Multi-cell Stack

Cell/ICs
Repeat 
units
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Oxygen Electrode Performance

• Screened several lanthanum 
strontium manganites (LSM), 
lanthanum strontium ferrites 
(LSF), and lanthanum 
strontium cobalt iron oxides 
(LSCF) as oxygen electrodes 

• Under both modes, electrode 
performance increases in the 
order of LSCF>LSF>LSM/YSZ
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Oxygen Electrode Performance Stability

• Excess performance 
degradation was 
observed with LSM/YSZ 
as the oxygen electrode 
in electrolysis mode 
(SOEC) mainly due to 
electrode delamination

• LSCF and LSF showed 
better performance 
stability in electrolysis 
mode than LSM/YSZ 
electrode
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Oxygen Electrode Analysis
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Performance Stability Improvement
• No significant difference in 

degradation rate between 
cells held under a constant 
load in fuel cell mode 
compared with cells that 
were held at OCV

• The dominant degradation 
mechanisms were likely to 
be thermally activated

• Coated interconnect 
significantly improved the 
performance stability

•a

•b

•c

Fuel cell held at 1.5A/cm2

Fuel cell held at OCV

Ohmic impedance

Bare Stainless Steel Interconnect with LSCF Electrode

Electrolysis held at 1.5A/cm2

Fuel cell held at 1.5A/cm2

Ohmic impedance

Coated Interconnect with LSCF Electrode
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Oxygen Electrode Reversibility

• Vacancy diffusion and activation 
at the oxygen 
electrode/electrolyte interface are 
different for fuel cell mode and 
electrolysis mode

• Higher current densities can lead 
to depletion of vacancies at the 
interface  in electrolysis mode

• Experimental data matched well 
with non-symmetrical vacancy  
model 

Non-symmetrical vacancy model

Symmetrical vacancy model
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Hydrogen Electrode Performance
Fuel cell mode

Electrolysis mode

• Higher polarization losses 
predicted under 
electrolysis mode mainly 
due to difference of 
diffusion

• Thinner electrode and 
smaller particles preferred

Conditions:
T = 800 C
Fuel = 50/50 H2/H2O
Active layer thickness= 16 μm
Active layer particle size=0.8 μm

Region I – H2/H2O diffusion and reaction limited
Region II – Reaction limited
Region III – Ion conduction and reaction limited



13

Hydrogen Program Review, 05/15/2007, PDP15

• At 800°C, internal 
reforming kinetic was fast

• CH4 conversion measured 
(gas chromatography) > 
98%, agrees well with 
thermodynamic prediction

• Thermodynamic 
calculations defined 
carbon deposition 
boundary

Thermodynamic Prediction of Carbon Deposition BoundaryThermodynamic Prediction of Carbon Deposition Boundary

X is the distance from the fuel inlet along the 
channel and L is the total channel length 

Hydrogen Electrode Internal Reforming
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• Performance (I-V curve) 
with internal reforming 
similar to  that with 64% 
H2/36%N2 fuel 

• Improved cells 
efficiency and potential 
system simplification 
with internal reforming
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• LSCF performed 
better than 
LSM/YSZ electrode 

• Substantial 
degradation rate 
reduction achieved 
with LSCF oxygen 
electrode in 
electrolysis mode

• Improved 
performance with 
electrode material 
selection and 
process 
engineering

Module Performance Improvement
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Multi-cell Stack Performance
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• Built and tested several 
multi-cell stacks under 
power generation and 
electrolysis mode for 
more than 1000 hrs

• Performance improved 
with process control 
and contact resistance 
reduction
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Stack Performance Demonstration

• 10-cell stack generated 
>6 SLPM H2 with ~1.1 
kW electrical input

• Excellent area specific 
H2 production capability 
(>4.5cc/min/cm2 at cell 
voltage less than 1.3V)

• >1000 hour dual mode 
operation
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Cost of Hydrogen Estimate
Central CoH with Various System Configurations
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• $3.7/kgH2 for distributed 
size (1500 kg H2 /day) 

• $2.7/kgH2 for central 
station size (150,000 
kgH2/day) due to capital 
and O&M cost reduction

• Integration of heat and 
steam production within 
an industrial plant can 
reduce CoH

• CoH is most sensitive to 
the cost of electricity (CoE) 
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Electrolysis CoH Comparison

• Alkaline
– Low stack cost
– High feedstock cost

• PEM
– Large stack cost
– Effect of high 

pressure not 
considered

• SOEC
– Lowest feedstock cost
– Low CoH due to 

reduced feedstock 
cost

CoH with Various Electrolysis Systems
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SOEC Technology Assessment
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Advantages:
– High thermodynamic efficiency
– Fast electrode kinetics at high 

temperature
– Low electrical energy demand

Challenges:
– Stack materials for performance and stability
– Reliable seals for efficient hydrogen collection
– Electrolyzer design and components fabrication for cost 

reduction
– System design for heat integration
– Enabling technologies such as high temperature recycle 

blower and high temperature heat exchanger 
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Preliminary RSOFC Technology 
RoadmapTechnology

Feasibility

Component Perf.
•Seals
•Interconnects
•Cells

Reliability
•Robust Seals
•Degradation

Scale up
•Large Cells
•Stack Design

Pressurization? 
•Stack
•Durability

Technology Demo 
•Small System
•Efficiency
•Dual Mode

POC Demo
•Pressurized
•Efficiency
•Reliability

Cost Reduction
•Manufacturing Process
•Low-cost Materials
•BOP Components

System Optimization
•Design
•High T HEXs
•High T Recycle Blower
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Summary
• Electrode development

– Performance: LSCF>LSF>LSM
– “Irreversibility” of oxygen electrode observed, associated with differences in vacancy diffusion and 

activation at  electrode/electrolyte interface
– Internal reforming with Ni-YSZ  modeled and demonstrated 

• Module and stack development
– Module and stack performance  improved by electrode engineering
– Performance stability improved with coated interconnects
– Demonstration stack operated over 1000 hours under dual mode
– High power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM 

hydrogen production in steam electrolysis mode using about 1.1 kW electrical power demonstrated

• Technology assessment and cost estimate
– Flexibility for dual mode operation
– Potentials for low cost and high efficient hydrogen production through steam electrolysis
– Cost of hydrogen production at large scale estimated at ~$2.7/kg H2, comparing favorably with 

other electrolysis technologies
– Key challenges identified and preliminary technology roadmap generated
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