

Novel Methods of Hydrogen Production Using C1 Chemistry

Gerald Huffman¹, Naresh Shah¹, Mohindar Seehra², Irving Wender³, Jack Tierney³, Ram Gupta⁴, Edward Eyring⁵, and Richard Ernst⁵

Consortium for Fossil Fuel Science: ¹University of Kentucky, ²West Virginia University, ³University of Pittsburgh, ⁴Auburn University, ⁵University of Utah

DoE Contract No. DE-FC26-O2NT41594 April 13, 2007

Contact: huffman@engr.uky.edu, (859) 257-4027 http://www.cffs.uky.edu

Project ID # PDP22

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: Oct. 1, 2005
- End: Sept. 30, 2008
- 28 % complete

Budget

- Total project funding
 - DOE \$4,500,000
 - CFFS \$1,125,000
- Funding received in FY06 -\$1,000,000

Barriers

- Produce hydrogen from coal with minimum CO₂ production.
- Hydrogen storage/carrier media.

Partners

CFFS: Univ. of Kentucky, West Virginia Univ., Univ. of Pittsburgh, Univ. of Utah, Auburn Univ.

Advisory Board: Eastman, ConocoPhillips, Chevron Texaco, US Air Force, US Army

Objectives and Approach

- Develop novel technology for producing hydrogen from coal, natural gas and biomass using C1 chemistry.
- Develop better methods of producing hydrogen-rich liquids and gases from coal, natural gas, and biomass using C1 chemistry.

The Consortium for Fossil Fuel Science (CFFS) is a research center with participants from five universities - Kentucky, West Virginia, Pittsburgh, Auburn, and Utah. This poster briefly describes the following novel methods of hydrogen production developed in this consortium.

- Catalytic dehydrogenation of alkanes Gerald Huffman and Naresh Shah, CFFS and Dept. of Chem. & Materials Engr., University of Kentucky
- Carbon-assisted electrolysis of water Mohindar Seehra, Dept. of Physics, West Virginia University
- Hydrogen by Supercritical Reforming of Water Ram Gupta, Dept. of Chem. Engr., Auburn University
- Hydrogen from Polyols Irving Wender and Jack Tierney, Dept. of Chemical Engineering, University of Pittsburgh
- High activity WGS catalysts produced by gas phase incorporation of Pd on very high surface area ceria – Edward Eyring and Richard Ernst, Dept. of Chemistry, University of Utah

Top – TEM image and size distribution of as-synthesized 10 nm Fe-Ni nanoparticles. Bottom – TEM and STEM images of the same nanoparticles on Mg(AI)O support.

Time-on-stream (TOS) H₂ production by methane dehydrogenation over Mg(AI)O supported: (Left) 0.2 wt% Fe-Ni (12 nm) nanoparticles; (Right) 5 wt% FeNi prepared by incipient wetness (IW) method.

HRTEM images of carbon nanotubes (MWNT) produced during ethane dehydrogenation at 600°C over Fe-Ni nanoparticles (10 nm, 0.2 wt%) supported on Mg(AI)O after removal of support in dilute nitric acid solution at room temperature. Some Fe-Ni nanoparticles remain within the MWNT tips.

TEM images of 12 nm and 4 nm Fe oxide particles prepared for use in lower alkanes dehydrogenation experiments. (*Hyeon et al, Nature Materials, 3, 2004, 891; Sun et al, J. Am. Chem. Soc, 126, 2004, 273*).

Effect of nanoparticles size on time-on stream (TOS) hydrogen production by catalytic dehydrogenation of methane over Fe/Mg(AI)O.

Hydrogen production by catalytic dehydrogenation

- Catalytic dehydrogenation of alkanes produces pure hydrogen and carbon nanotubes in one step. No carbon oxides are produced. Binary Fe-M on various supports exhibit excellent activity and productivity.
- Multiwalled nanotubes are produced at $T > 600^{\circ}C$ and stacked cone nanotubes at $T \le approximately 500^{\circ}C$
- A new Mg(AI)O support has been produced from Mg-AI hydrotalcite precursor. It has high surface area and is easily dissolved in nitric acid, which greatly simplifies nanotube cleaning.
 - Fe-Ni nanoparticles of uniform size (10 nm) have been synthesized and dispersed on Mg(AI)O. These catalysts exhibit better activity for hydrogen production than Fe-Ni/Mg(AI)O prepared by incipient wetness technique.
 - 4 nm and 12 nm Fe nanoparticles on Mg(AI)O exhibit reasonably good activity for dehydrogenation but not as good as Fe-Ni nanoparticles.

Carbon-assisted electrochemical production of hydrogen at room temperature

Coughlin et al (J.Appl.Electrochem.10,729,1980) proposed the electrochemical gasification of carbons :

Anode : Cathode : Net reaction : $C(s) + 2H_2O(l) \rightarrow CO_2(g) + 4H^+ + 4e^ 4H^+ + 4e^- \rightarrow 2H_2(g)$ $C(s) + 2H_2O(l) \rightarrow CO_2(g) + 2H_2(g)$

 $\Delta G = \Delta G (product) - \Delta G (reactants)$ = -94.26 (CO₂) + 2(56.7) = 19.27 kcal/ 2mol H₂O = 9.6 kcal/mol H₂O, compared to 56.7 kcal/mol H₂O without carbon $E^{0} = -\frac{\Delta G}{nF} = -0.21V$ compared to E^{0} = - 1.23V for electrolysis of water without carbon

water without carbon.

* For details, see Seehra et al, Appl. Phys. Lett. 90, 044104 (2007).

Carbon-assisted electrochemical hydrogen production

Working electrode area : 6.8 cm² ;Counter electrode area : 2.55 cm²

Carbon-assisted electrochemical hydrogen production

 H_2 is produced at voltages as low as 0.1V, but time required to produce the same amount of H_2 is higher and the corresponding current is lower.

Energy requirements for carbon-assisted electrochemical hydrogen production

- Power = $I E_0$ (Joules /sec or watt)
- Energy needed = $\int P dt = I E_0 t$
- 1 kiloWatt-hour = 10^3 Joules/sec x 3600 sec = 3.6×10^6 Joules

E ₀ (volts)	l ₀ (mA)	Power=E ₀ I ₀ (10 ⁻⁴ watts)	t _H (min/H ₂)	E ₀ . I ₀ . t _H (10 ⁻⁴ watt- hr/H ₂)	A _H (10 ² H ₂ /watt-hr)
0.1 (Carbon)	0.4	0.4	95.9	0.64	156.3
0.28(Carbon)	4.4	12.32	18.5	3.8	26.3
0.51(Carbon)	6.38	32.54	8.3	4.5	22.2
1.78(Carbon)	200	3560	0.37	22.0	4.54
1.67 (No Carbon)	65	1085.5	3.16	57.2	1.75

Energy consumption to produce same amount of H₂ goes up sharply as V increases. But the time requirements go down with increasing V.

Carbon-assisted electrochemical hydrogen production

Carbon-assisted H_2 production at lower voltages is considerably more energy efficient, although it takes somewhat longer to produce the same amount of H_2 . Use of catalysts to reduce this time is being investigated.

Hydrogen Production by Reforming in Supercritical Water

- H_2O is both a reactant and the solvent
- Direct high-pressure H₂ is obtained
- Compact reactors: reactions time in seconds
- In-situ separation
- Energy integration
- · Carbon dioxide can be easily sequestered
- Avoids char formation

Supercritical water is like an organic solvent!

[Kritzer and Dinjus, Chemical Engineering Journal (2001), 83(3), 207-214]

Experimental Setup - H₂ Production by Reforming in Supercritical Water

Hydrogen Production by Reforming in Supercritical Water

 H_2 from 10 wt.% methanol using Monel-400 (Ni_{0.67} Cu_{0.33}) Reactor - 600 °C, feed rate = 1 ml/min, reactor length = 1 m

[Gadhe, Jayant B.; Gupta, Ram B., Industrial & Engineering Chemistry Research (2005) 44, 4577-4585]

Hydrogen Production by Reforming in Supercritical Water

 $C_6H_5CH_3 + 14H_2O \Leftrightarrow 7CO_2 + 18H_2$

Inconel reactor, Ru/Al_2O_3 catalyst, 800°C, 3500 psi, 2.1 wt% toluene in water feed

Hydrogen from Polyols

- Polyols are alcohols which contain two or more adjacent hydroxyl groups connected to carbons. They can be obtained from natural materials such as sugars, fats or cellulose.
- They can be reacted with water in a single step reactor at 200-250°C and sufficient pressure to prevent vaporization of the water to produce a high yield of hydrogen and low CO.
- Hydrogen yield and selectivity for a series of polyols ranging from C₂ to C₆ have been measured using a flow reactor and a variety of experimental conditions.

Hydrogen Production from Biosustainable Polyols

Hydrogen Production from Selected Polyols

Reactant	Feed Conc. (wt%)	H ₂ Yield (mole %)	H ₂ Selectivity %
Ethylene glycol	1	67.7	82
	10	62.1	80
Glycerol	1	63.8	70
	10	61.7	68
Sorbitol	1	59.8	58
Sucrose	1	52.0	50
Glucose	1	47.2	33
Corn syrup (97% D-glucose)	1	46.8	31

Reaction Conditions: 220°C, 350 psi, 1 % $PtAl_2O_3$; CO < 400 ppm Hydrogen yield based on total hydrogen in polyol

Hydrogen from Polyols - Catalyst Specificity

Experiments with glycerol, a by-product of biodiesel manufacture, have shown that it can be converted to hydrogen by splitting the O-H bond using a Pt catalyst or to chemicals by splitting the C-C bond using a Cu catalyst. High activity WGS catalysts produced by gas phase incorporation (GPI) of Pd on very high surface area ceria

- Use of volatile, organometallic Pd source yields very small and well-dispersed Pd particles
- Comparison of GPI Pd with conventionally (solution based) applied Pd exemplifies significant advantages of GPI for Water-Gas Shift (WGS) reaction

	Pd	Incorporation	Activity @ 200 °C	Improvement @
	(%)	Method	$(mmol-H_2/g-cat h)$	200 °C w/ GPI
	1	solution	4.2	
	1	gas-phase	7.2	71%
	2	solution	4.3	
	2	gas-phase	11.0	155%
	5	solution	11.6	
$Pd(n^3-C_2H_5)(n^5-C_5H_5)$	5	gas-phase	18.7	61%

Production of very high surface area (S_A) Ceria aerogel

- Very high surface ceria
 - Maximum BET $S_A = 375 \text{ m}^2/\text{g}$
 - Synthesized by sol-gel chemistry
- Can be readily doped with precious metals for active WGS catalysts by multiple methods
 - GPI of volatile organometallic
 - Solvent incorporation with suspended, preformed nanoparticles

WGS activity of high S_A ceria aerogel

- Pd/ceria BET $S_A = 283 \text{ m}^2/\text{g}$
- Pd/ceria (calcined) BET $S_A = 137 \text{ m}^2/\text{g}$
- Pd incorporated via GPI

Silica aerogel-supported ceria

- XRD data indicates relatively constant ceria crystallite size of 7 nm – with no observed sintering or agglomeration under practical conditions:
 - Independent of ceria loadings
 - Independent of calcination temperatures, up to at least 650 °C
 - After extreme reaction conditions, more harsh than intended application, (WGS at 350 °C)
- U.S. Patent Application (in progress)