

HyPEP Model Development

Chang Oh, Steven Sherman Idaho National Laboratory May 15, 2007 INL/CON-07-12489

Project ID # PDP29

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: October 2005
- End: September 2008
- Percent complete: 55%

Barriers

- High-temperature thermochemical technology
- Technology-validation hydrogen from nuclear power

Budget

- Total project funding
 - DOE share: \$1,270K
 - Partner share: \$300K
- Funding received in FY06: \$390K
- Funding for FY07: \$530K

Partners

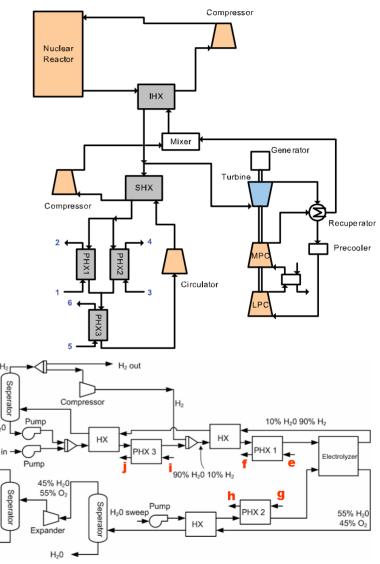
- Idaho National Laboratory (INL)
- Argonne National Laboratory (ANL)
- Korea Atomic Energy Research Institute (KAERI)

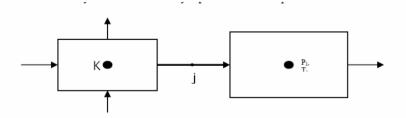
Objectives

- HyPEP <u>Hy</u>drogen <u>P</u>roduction <u>Efficiency</u> Calculation <u>P</u>rogram
- Overall
 - Development of an easy-to-use, non-proprietary, fast-running software tool for evaluating and optimizing nuclear plant/hydrogen plant configurations
 - Modeling of the Next Generation Nuclear Plant (NGNP), a combined nuclear plant/hydrogen plant that will employ a Very High Temperature Gas-Cooled Nuclear Reactor (VHTR) and a high-temperature watersplitting process to produce hydrogen
- FY07
 - Alpha test HyPEP code structure
 - Incorporate high-temperature electrolysis into integrated nuclear plant/hydrogen plant model

Approach

- Progressive code development and cross-checking between development teams and established software packages
 - Identify major systems/components for modeling
 - Establish system parameters and modeling scope
 - Determine overall calculation scheme
 - Develop component models
 - Develop economic and performance optimization models
 - Verify and validate results
- Parallel development of graphical user interface
- Collaborative development across laboratories
 - Idaho National Laboratory (INL)
 - Argonne National Laboratory (ANL)
 - Korea Atomic Energy Research Institute (KAERI)




0₂ out

 H_20

- Selected reference NGNP
 configurations (ANL and INL)
 - General Atomics Sulfur-Iodine and INL high-temp electrolysis methods
 - Parallel electricity and hydrogen production
 - Brayton cycle used for electricity production
 - 600 MWt VHTR with nominal 50 MW hydrogen plants

- Calculation methods devised (KAERI)
 - Network-based thermal/hydraulic system
 - Nodes (volume) connected by links (junction)
 - Field equation formulation
 - Mass and energy conservation
 - Simple flow relations for links
 - Steady-state only

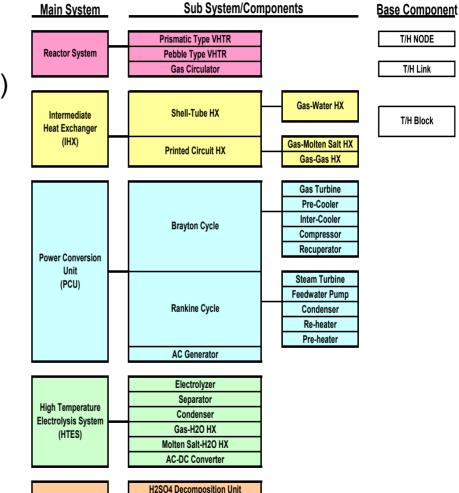
Energy Continuity (for node)

$$V\frac{\partial(\rho h)}{\partial t} = \sum_{j=1}^{N_j} \widetilde{\rho}_j \widetilde{h}_j A_j \ u_j + S_h V$$

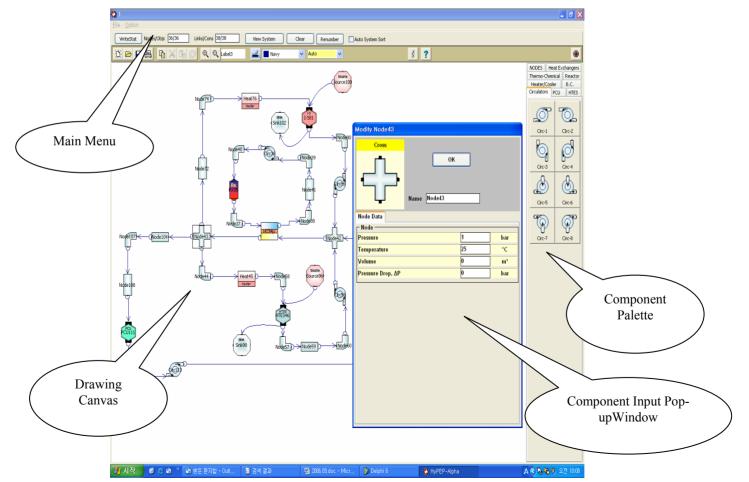
Mass Continuity (for node)

$$V\frac{\partial\rho}{\partial t} = \sum_{j=1}^{N_j} \widetilde{\rho}_j A_j u_j + S_m V$$

Flow Relationship (for link j)

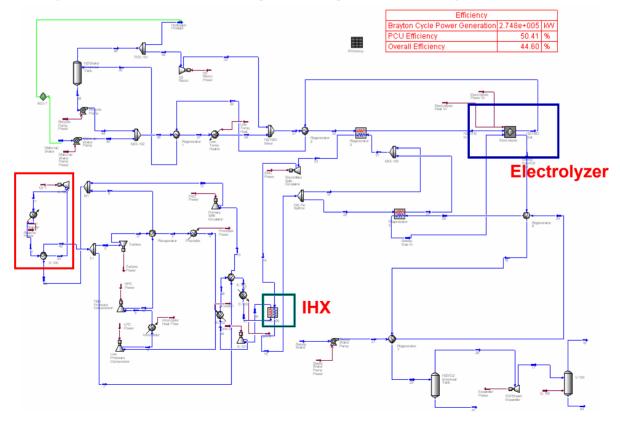

$$f_T \frac{\rho u^2}{2} = (P_K - P_L) + \Delta P_{K,source} + \Delta P_{extra}$$

Thermo-Chemical

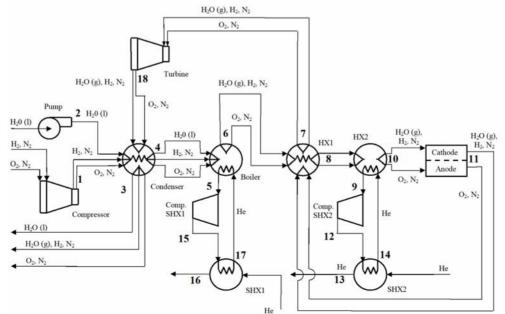

System

(TCS)

- Devised overall calculation scheme for HyPEP (KAERI)
 - Node-link-block
 - Hierarchical arrangement of sub-units
 - Examined use of Fortran, C#, Visual Basic and Delphi
 - Selected Delphi 2006 for its excellent objectoriented programming structure and compatibility with Win32 and .NET environments



• Development of graphical user interface (KAERI)



8

- Verification (development of comparison models)
 - Detailed modeling and parametric studies of high-temperature electrolysis reference design using HYSYS by Aspentech (INL)

- Verification (development of comparison models)
 - Gas-Pass/H model also used to examine system configurations (ANL)
 - Code modified to accommodate temperature dependent fluid densities
 - Network-based representation parallels that of HyPEP
 - Gas-Pass/H allows use of time-dependent (non-steady-state) equations, and so might be used in the future for examination of start-up, shutdown, off-normal, and control system strategies

- HyPEP alpha version is undergoing testing in FY07 (KAERI)
 - Node-link-block: basic T/H components
 - Sink, source: boundary condition (node)
 - Fill, drain: boundary condition (link)
 - Heat exchanger: derived (node, block)
 - Circulator: simple model
 - Nuclear Reactor: simple model
 - Hydrogen plants: black box models (node-based)
 - Power conversion unit: black box models (node-based)
 - Very limited analysis capability; only basic or conceptual problems with simple layouts can be handled at this time

Future Work

- Remainder FY07
 - Complete parametric studies of high-temperature electrolysis configuration (INL)
 - Changes in pressures, parallel versus serial, heat transfer fluids and fluid conditions
 - Continue to develop non-steady-state integrated models using GAS-PASS/H (ANL)
 - Prepare HyPEP model for beta-testing (KAERI)
 - Release HyPEP to INL and ANL for validation/verification
 - Release initial HyPEP User Manual

Future Work

- FY08
 - Incorporation of most recent General Atomics Sulfur-Iodine reference flow sheet and chemical kinetics data into integrated HYSYS model (INL)
 - Development of dynamic integrated system models for configurations of interest using GAS-PASS/H and cross-validation of models against HyPEP and HYSYS (ANL)
 - Beta-testing of HyPEP (ANL, INL, KAERI)
 - Incorporation of basic economic and component sizing modules (KAERI)
 - Public release of fully capable HyPEP tool (KAERI)
 - Updated User's Manual
 - Models and Correlations Manual

Summary

- HyPEP <u>Hy</u>drogen <u>P</u>roduction <u>Efficiency</u> Calculation <u>P</u>rogram
- I-NERI Project between ANL, INL, and KAERI
- Within Year 2 of a 3-year Project
- Steady-state integrated model of NGNP includes INL high-temp electrolysis and soon General Atomics Sulfur-Iodine Method
- Currently undergoing alpha-testing
- Will undergo beta testing in FY08
- Finished software will provide easy-to-use validated program for calculating energy efficiencies and relative costs of different NGNP configurations