

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Materials Issues and Experiments for HTE and SO₃ Electrolysis

J. David Carter, Bilge Yildiz, Jennifer Mawdsley, and Magali Ferrandon

Argonne National Laboratory

Paul Demkowicz, Pavel Medvedev, and Kevin DeWall

Idaho National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

High Temperature Steam Electrolysis Stack Post-test Evaluation and Electrode Development

Overview

<u>Timeline</u>

- Project start FY'04
- **Budget**
- **FY**06 \$583k
- **FY07 \$344**k

<u>Barriers</u>

- Stack degradation
- Electrode performance and durability

Argonne contributors

Ann Call, Jeremy Kropf, Victor Maroni, and Deborah Myers

Partners

- Idaho National Laboratory
- Ceramatec, Inc.

- Determine causes of degradation in stack components from 25-cell (1000 h) and 22-cell (200 h) stack tests
- 2) Develop oxygen and steam-hydrogen electrodes that show significantly improved area specific resistance and durability over state-of-the-art electrodes.

Approach

- **1)** Post-test stack evaluation:
 - Map cell and bipolar plate surfaces to find sources of degradation using:
 - 4-point resistivity
 - X-ray fluorescence from Advanced Photon Source
 - Raman-microspectroscopy
 - Use mapping results and analyze selected cross sections with Scanning Electron Microscopy
- 2) Improved oxygen and steam/hydrogen electrodes
 - Pr₂NiO₄ polarization, stability tests
 - $La_{1-x}Sr_{x}Mn_{1-x}B_{x}O_{3}$ B= Cr, AI, Ga polarization, stability tests

Resistivity maps for oxygen electrodes show degradation at hydrogen exit of cell

 Baseline Cell (untested) reasonably flat resistivity.
2-6 ohm-cm

 22-cell stack (200-h) higher resistivity but reasonably flat.
3-7 ohm-cm

25-cell stack (1000-h) large growth in resistivity toward hydrogen/steam exit of the cell. 11 – 12 ohm-cm

Raman micro-spectroscopy on oxygen electrodes identifies unexpected phases

Monoclinic zirconia observed on exposed edges of the ScSZ plate

Chromium reacted with AI in sealant near edge of electrode

X-ray fluorescence and transmission show Cr migration and thickness variations in the cell

- Cr deposits along edges of sealant
- Cr deposited only in electrode region and not on zirconia ⇒ solid state diffusion
- Gas flow direction is evident by Crdeposition pattern
- Cr has migrated into the electrode towards electrolyte interface
- Thickness variation in electrode
- Increased transmission near known degraded edge
- Increased transmission near oxygen seal
- Would like to use XANES & EXAFS determine chemical state of elements in areas of interest

XANES: X-ray Absorption Near Edge Structure EXAFS: Extended X-Ray Absorption Fine Structure

SEM analysis of oxygen electrode shows delamination in the oxygen electrode

- Delamination near the edge of the oxygen electrode was found where high resistance was measured with the 4-point probe
- Internal defaults were also seen near the edge

SEM analysis of steam-hydrogen electrode identifies Si and AI contamination

- Area with low resistivity on 4point probe maps:
 - Al present at electrode/bond layer interface
 - More AI near the sealed edge (AI:Ce = 0.05 – 0.25)
- Area with high resistivity on 4point probe maps (at the edge):
 - More Si found near where bond layer was removed (Si:Ce = 0.05 – 0.24)
 - Al found throughout (Al:Ce = 0.16 - 0.29)

Increased contaminants near the sealed edges indicate that the seal material may be the source of Si and Al

High temperature electrolysis oxygen electrodes improve with CSO interlayer

- Addition of a CSO interlayer improves performance of PSC electrodes
 - No secondary phases found by XRD
- CSO interlayers improve the performance of Pr₂NiO₄
- The roughness on the top of the ceria layer may contribute to the improved performance

Increasing steam concentration increases ASR of steam/H₂ electrodes

- ASR results for ZYT, LSCM, and Nb₂TiO₇ follow the same trend
 - $ZYT = Zr_{0.62}Y_{0.2}Ti_{0.18}O_{1.9}$
 - LSCM =
 - La_{0.25}Sr_{0.75}Cr_{0.5}Mn_{0.5}O_{3-δ}
 - SZYT =

 $Sc_{0.15}Zr_{0.62}Y_{0.05}Ti_{0.18}O_{1.9}$

Temperature = 830°C

ASR = Area specific resistance

Steady state performance of steam/hydrogen electrodes shows that oxides may replace Ni-YSZ

- Temp = 830°C
- Current density = 200 mA/cm²
- Feed gas = H₂
- Steam to H_2 ratio = 6

- Degradation of the perovskite sample is due in part to exfoliation of the counter electrode, which was made out of the same material
 - Exfoliation also occurred with Pt and Ni-CeO₂ counter electrodes

Future Work

Stack evaluation:

- Use post-test examination to evaluate Integrated Lab Scale stack
- Use XANES and XAFS to gain chemical information in areas of interest on oxygen and steam/H₂ electrodes
- Work with Ceramatec in mitigating causes of stack degradation

Oxygen and steam/H₂ electrode development:

- Prepare steam electrolysis cells and test electrode durability for 500-h operation
- Investigate Cr-poisoning
- Continue development of steam/H₂ electrode using perovskite oxides and alloys

Summary on High Temperature Electrolysis Stack Post-test Evaluation and electrode development

- 4-point resistivity measurements show
 - Oxygen electrodes degraded along the seal at the hydrogen exit of the stack
 - Steam/H₂ electrodes degraded at the hydrogen exit of the stack
 - The bipolar plate had a highly resistive chromium compound
- Raman micro-spectroscopy identified monoclinic zirconia, Cr-Al₂O₃ crystals, and Cr-spinel forming in the surface of electrodes
- APS X-ray fluorescence and transmission identified Cr diffusing into the electrode toward the interface and electrode thickness variations
- SEM analysis verified edge degradation via delamination and Sr segregation in the oxygen electrode
- SEM analysis of steam/H₂ electrodes identified AI and Si impurities in areas that showed high resistivity in 4-point measurements
- Pr₂NiO₄ with ceria interlayers show promise
- Perovskite compositions show potential for use as steam electrodes for HTSE

Materials Degradation Studies for High Temperature Steam Electrolysis Systems

Paul Demkowicz, Pavel Medvedev, Kevin DeWall Idaho National Laboratory May 2007

Project ID # PDP30

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start date: Jan 2006

• Budget

- Total project funding to date
 - \$858K
- Funding received in FY06
 - \$492K
- Funding in FY07
 - \$366K

Barriers

 Electrolysis cell/plant materials degradation

Partners

- Ceramatec Inc.
- Argonne National Laboratory

Objectives

- Overall:
 - Investigate the high temperature degradation behavior of solid oxide electrolysis cell (SOEC) and electrolysis balance-of-plant materials.
 - Identify degradation mechanisms and kinetics to help determine component lifetimes and propose new materials for long-term device operation with minimal property degradation.
- FY07
 - Conduct corrosion experiments on Ceramatec electrolysis cell materials

Approach

1. Develop high temperature corrosion test capability

- Single and dual atmosphere ("bi-polar") corrosion experiments
- Gas mixtures:
 - H₂O/H₂ (simulates cathode-side)
 - Air/O₂ (simulates anode-side)
- Temperatures to 1000°C
- Safety engineering for laboratory use of H_2 and O_2

2. Corrosion testing

- Ceramatec SOEC materials
 - Ferritic stainless steel
 - With and without proprietary rare-earth-based coatings
 - Ni-Cr high temperature alloy
- Balance-of-plant materials
 - 3. Sample characterization
- Corrosion kinetics
- Corrosion scale phase identification, thickness, and microstructures
- Area-specific resistivity of scale

Corrosion test stand development

daho National Laboratory

- Three independent furnaces
- Three sets of parallel gas supply lines
 - 1. H₂O/H₂/N₂ (steam provided by heated water bath)
 - 2. Air/O₂
- Gas mixtures set with mass flow controllers
- Automatic data logging
- H₂ and O₂ gas safety systems:
 - Trace He injection to detect H_2 -O₂ gas cross-mixing
 - Interlocked H₂ and O₂ monitors in laboratory

Initial corrosion test results (1)

- 500 h tests completed at 850°C with the following gas mixtures:
 - $H_2O/H_2 = 5.3, 0.5$
 - Dry air
- Sample characterization is ongoing:
 - Scale microstructures and thickness
 - Scale chemistry
 - Scale resistivity as a function of temperature:

daho National Laboratory

- Ni-Cr alloy base metal more corrosion resistant in both H₂O/H₂ and air than ferritic stainless steel
- Proprietary Ceramatec coatings effective in reducing corrosion in H₂O/H₂; less effective in air

Initial corrosion test results (2)

In H₂O/H₂:

- Ferritic stainless steel forms chromite (FeCr₂O₄)
- **Ni-Cr alloy forms duplex** layer of magnetite (Fe_3O_4) and chromia (Cr_2O_3)

Surface microstructures of uncoated stainless steel and nickel alloy specimens and results of x-ray diffraction phase analysis $(187 h @ 825C; H_2O/H_2 = 0.9)$

daho National Laboratory

Future work

FY07

- Complete initial corrosion tests (Apr 2007 milestone) and sample characterization
- Select candidate electrolysis balance-of-plant materials for future tests

FY08

- Perform long term (> 1000 h) corrosion tests on electrolysis cell and balance-of-plant materials
- Construct dual atmosphere corrosion cell and perform corrosion tests on metallic interconnects

Summary

Relevance:	Address issues with materials degradation in SOECs and in balance-of-plant components that can affect process efficiency and operational lifetimes.
Approach:	Conduct corrosion tests on electrolysis cell and plant component materials to assess material performance and degradation behavior.
Accomplishments:	Built corrosion test stand; performed initial 500 hour tests on Ceramatec electrolysis cell materials (in progress); demonstrated coating effectiveness in corrosion inhibition
Future work:	Perform long term tests on electrolysis cell and balance- of-plant materials; construct experimental apparatus and perform dual-atmosphere corrosion studies on metallic interconnect materials.

... for a brighter future

SO₃ Electrolysis: Reduced Temperature Sulfur-lodine Cycle

J. David Carter, Jennifer Mawdsley, and Magali Ferrandon

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information

SO₃ Electrolysis: Reduced Temperature Sulfur-Iodine Cycle

Sulfur-lodine cycle to produce hydrogen:

Reduce temperature by electrochemical reduction (electrolysis) $SO_3 \rightarrow SO_2 + \frac{1}{2}O_2 + electricity 500-600^{\circ}C = 0.11 V$

Timeline

Start – Oct 2005

<u>Budget</u> ■ FY06 - \$164k ■ FY07 -\$120k

Barriers

- Economical production of hydrogen from water
- High temperature of sulfuriodine thermochemical cycle
- Electrode stability and activity in corrosive H₂O-SO₂-SO₃ atmosphere

Objectives

- Determine feasibility of SO₃ electrolysis to reduce temperature of Sulfur-Iodine thermochemical cycle to 500-600°C
- Build electrochemical test reactor to develop and test SO₃ electrodes
- Develop electrochemical cell materials to build SO₃ electrolyzer
 - Oxygen electrodes
 - SO₃ electrodes

- Build single atmosphere H₂O/SO₂/SO₃ test reactor to analyze candidate SO₃ electrodes
- Determine elements that are thermodynamically stable in SO₂/SO₃ atmosphere

Fabricate new SO₃ electrodes based on thermodynamic study and understanding of ceramic electrochemical devices

SO₃ electrode test fixture

- H₂SO₄/H₂O mixture is sprayed into sample tube above the cell
- O₂ and SO₂ monitored by mass spectrometry

Results:

Electrochemical cell was shown by cyclic voltammetry to reduce some SO₃ to SO₂

Stability diagrams help identify candidate electrode elements

- Calculated predominance diagrams illustrate stable phases in SO₂-SO₃
 - Blue = Sulfate <u>undesirable</u>
 - Red = Oxide
 - Yellow = Metal
- Gold is only stable metal
- Traditional SOFC electrodes are not stable in SO₂/SO₃
- Candidate oxide has been identified, fabricated and tested as electrodes, others being fabricated

Future Work

- Fabricate, test and improve SO₃ electrodes
- Develop cell design for the SO₃ electrolyzer

Summary

- Electrochemical test stand built to test SO₃ electrodes
- Cell containing Pt electrodes showed electrolysis by cyclic voltammetry
- Periodic element chart was developed to identify possible candidates for SO₃ electrode materials

