

Corrosion and Crack Growth Studies of Heat Exchanger Construction Materials for HI Decomposition in the Sulfur-Iodine Hydrogen Cycle

Bunsen Wong General Atomics May 15, 2007

Project ID # PDP31

IFT\P2007-019

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

<u>Timeline</u>

- Project start: Jan 2004
- Project end: Sep 2007
- Percent complete:
 85%

Budget

- Total project funding
 DOE: 989k
- Funding FY06: \$471k
- Funding FY07: \$159k (6/07-9/07)

Barriers

- Corrosive chemicals at elevated temperatures: HI_x, conc. H₃PO₄
- Stress corrosion issues
- Cost of construction materials

<u>Partners</u>

- Collaborators: Profs. Ajit Roy & Allen Johnson (UNLV) for mechanical testing and analytical support
- Project management: Dr. Tony Hechanova (UNLV)

Objectives

<u>Overall</u>

Develop heat exchanger construction materials for the HI Decomposition process

<u>2004-2006</u>

Screening of materials candidates in $HI_{x'}$, $HI_{x} + H_{3}PO_{4'}$ conc. $H_{3}PO_{4'}$, $HI + I_{2} + H_{2}$ (gaseous)

2006-2007

- Stress corrosion and long term testing of qualified candidates
- Effect of chemical contaminations on corrosion
- Testing of components with Ta cladding

Approach

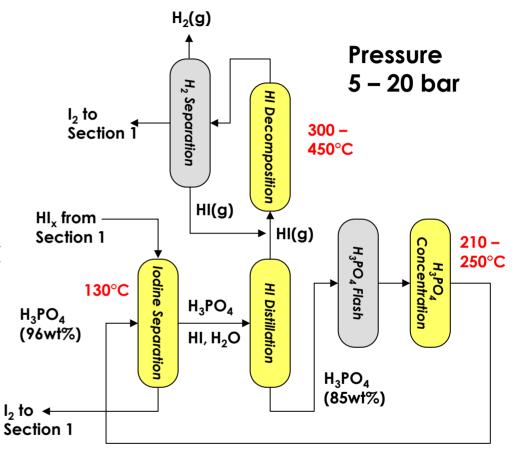
Development

FY05-FY07

Screening FY04-06

- Construction of Test Systems
- Immersion Testing of Metallic and Ceramic Coupons up to 120 hours in a Static Environment
- Long Term Testing of Qualified Candidates in both Static and Flow Environments
- Stress Corrosion
 Testing to Study
 Crack Initiation
 & Growth
- Testing the Effect of Chemical Contaminations

Prototype FY06-FY09

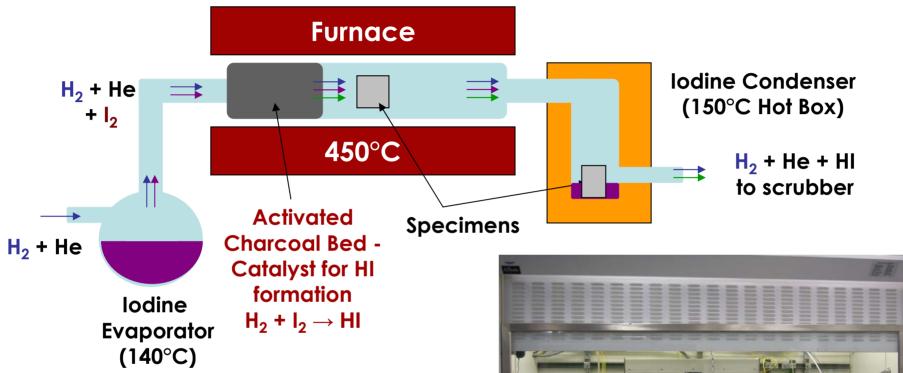

- Testing of Process Components Fabricated with Qualified Materials
- Explore Means for Cost Reduction e.g. Cladding
- S-I Corrosion Test Loop to Study Cross Contamination Effects

Construction materials are needed for four different chemical environments in Section III of the S-I Cycle

- Iodine Separation $HI_x-H_3PO_4 - 140^{\circ}C$
- H₃PO₄ Concentration
 85-96wt% H₃PO₄ 250°C
- HI Distillation $H_3PO_4-H_2O-I_2-HI - 190^{\circ}C$
- HI Decomposition H₂-I₂-HI (g) – 450°C

<u>Upper Corrosion Limits</u> Tubing/Valves – 2.95 mpy Vessel – 19.7 mpy

HI Decomposition via Extractive Distillation

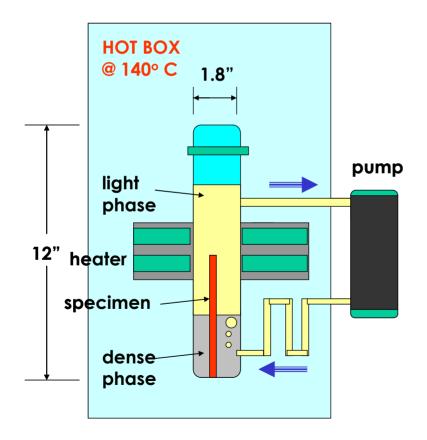


A total of six test systems have been constructed to help qualify materials for the different environments

- <u>Phosphoric Acid Boiler (x2)</u> FY05 and FY06 testing of samples in boiling H₃PO₄ acid and HI distillation liquid
- <u>HI Decomposer FY06</u> gas flow system to test sample in HI + I₂ + H₂ and condensing I₂
- <u>Iodine Separator with Circulating Acid</u> FY06 testing of samples in H_3PO_4 + HI_x and HI_x
- <u>Component Test System FY06</u> testing of valve, tubing and other components in H₃PO₄ + HI_x and HI_x
- <u>Static High Pressure Test System</u> FY04 testing of sample in static $H_3PO_4 + HI_x$ and HI_x

The HI decomposition materials test system replicates the HI gaseous decomposition environment

- Eliminates the need to procure expensive HI gas
- Test materials for both HI decomposition and lodine condensation



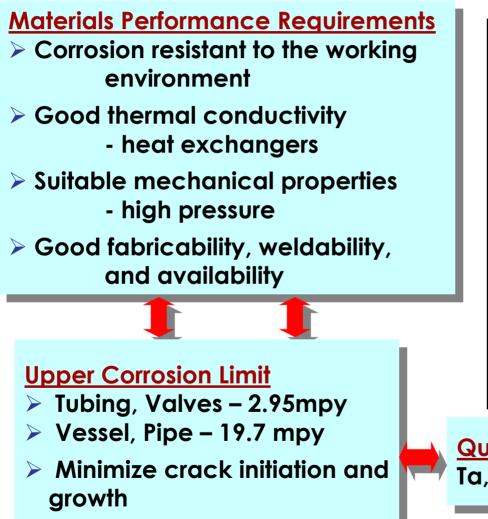
FY06 Accomplishments: HI Decomposition Test System

The acid (HI_x ; $HI_x + H_3PO_4$) circulating system enable materials testing in a dynamic environment

- Corrosion behavior can be radically affect by agitation
- System can handle two phase liquids: H₃PO₄-HI-H₂O (light) I₂ rich (dense)

- The light phase is pumped into the bottom of the capsule. It rises to the top due to density difference
- Processed and Ta coated parts, stress corrosion and tensile specimens have been tested in this set up

178 hr



A Ta-10W tube section with a Ta weld

FY06 Accomplishments: Circulating Acid Test System

In FY05, a total of 25 materials have been screened in HI_x at 310°C; Ta and Nb alloys meet the criteria

	Corrosion Rate (mm/yr)	
Material	Boiler (310°C)	Feed (262°C)
Nb-7.5Ta	-3.911	0.391
Splint Si-SiC	-3.301	0.000
SiC (sintered)	-2.584	
Mo-47Re	-0.664	
SiC (CVD)	-0.565	-0.565
Τα	-0.513	0.086
Ta-2.5W	0.000	
Ta-10W	0.040	-0.234
Nb-10Hf	0.051	0.000
Ta-40Nb	0.274	-0.091
Nb	0.417	0.000
Zr702	467.094	0.504
C-276	1083.060	
Haynes 188	411.957	

Qualified Candidates Ta, Ta-2.5W, Ta-10W, Nb-10Hf

Accomplishments : Screening in HI_x at High Temperatures

In FY06, we have identified construction materials for the different environments in Section III

Qualification is based on long term immersion in regular settings and that with chemical contaminations

Iodine Separation

Ta-10W	0.018
Ta-2.5W	0.029
SiC	0.081
Ta	0.113

(mpy)

HI Distillation

Ta-10W 0.688

HI Decomposition

B2	2.549
C276	13.497
C22	14.438

H₃PO₄ Concentration

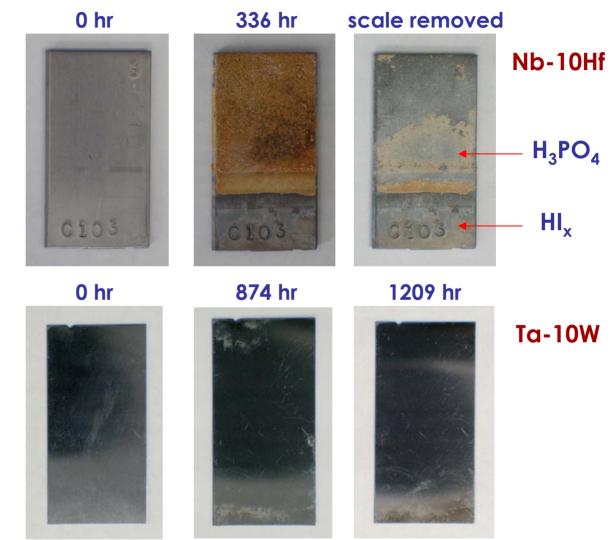
Ta-2.5W	1.361
SiSiC	3.104

Tubing/Valves – 2.95 mpy Vessel – 19.7 mpy

FY06 Accomplishments: Materials for HI Decomposition

13 different materials have been tested in the static lodine Separation $(HI_x+H_3PO_4)$ environment

Sample	Hours	Corr. Rate (mpy)
Nb-1Zr (1)	120	-0.92
Ta-2.5W	1000	0.029
Ta-10W	336	0.045
SiC	120	0.239
Мо	160	0.45
Ta	336	0.902
Hastelloy B2	336	19.94
Nb-7.5Ta	336	22.97
Nb-1Zr (2)	120	27.7
Nb	336	38.91
Nb-10Hf	336	40.49
Zr705	120	91.32
C-276	120	139.88
C-22	120	147.07


- Ta, Ta-W and SiC showed no sign of corrosion after test
- Long term testing up to 1000 hrs has been completed
- Ta alloy bulk components were tested in a system with circulating acid
- Effect of chemical contamination (H₂SO₄ trace) showed no effect so far

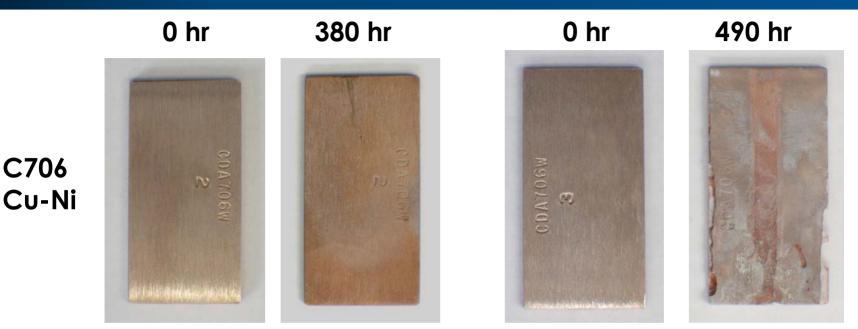
Materials that can handle HI_x at high temperature may not be suitable for lodine Separation

Nb alloys showed noticeable corrosion in the HI_x + H₃PO₄ mixture at 120°C

Ta alloys are the only metals which can handle the iodine separation acid complexes

FY06 Accomplishments: Materials for Iodine Separation

11 candidates were tested in boiling 95 wt% phosphoric acid

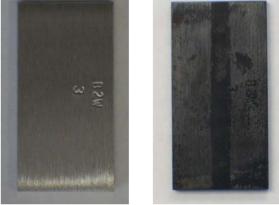

- Based on post test specimen state and corrosion rate, Ta-2.5W, Ag, Cu-Ni and Si-SiC all showed good corrosion resistance in this environment
- SiO₂ and alumina based ceramics have been severely etched in this acid

	hours	mpy
Si-SiC	96	-1.37*
Ta-2.5W	456	-0.541
Ag	336	2.583
Cu-Ni	336	0.65
B2	336	-4.51

-ve: weight gain after test due mainly to a phosphate layer that is attached to the specimen

However, contaminants (I₂, HI) additions lead to unanticipated corrosion of materials

H₃PO₄-3HI-5H₂O (wt%) at 250°C H₃PO₄-14.4HI-0.7I₂-16.1H₂O (wt%) at 190°C


- Only Ta based alloys were not affected by HI and I₂ additions in H₃PO₄
- Cross contamination of chemicals and corrosion products will be the key issue in the longevity of components

Hastelloys showed the best corrosion performance in the HI decomposition environment (HI + I_2 + H_2)

	hours	mpy
B-2	1172	2.55
C-22	1570	10.70
C-276	1220	13.50

0 hr 1172 hr

B-2

Stress corrosion testing of C-22 and C-276 Ubend and C-ring specimens did not show any crack initiation

FY06 Accomplishments: Materials for HI Decomposition

Ta coated components can be an effective means to reduce equipment cost

Testing of Ta coated parts with different deposition means is on going

294 hr

0 hr

Cr-Mo steel coupon coated with sputtered Ta and then anodized. Severe corrosion took place after immersion in HI_x + H₃PO₄ Ta plated washer showed no sign of corrosion after immersion in HI_x + H₃PO₄

0 hr

399 hr

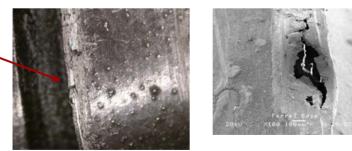
Performance of Ta coated components such as fittings and valves have also been evaluated

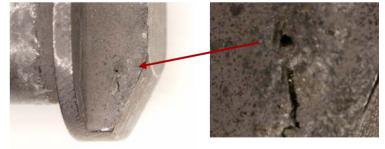
> Most valves parts did not show any sign of corrosion

0 hr

1160 cycles (88 hr) 0 hr

1160 cycles





Testing did reveal incorrect assembly can lead to damage in the Ta coating

Damaged fitting during installation

Incorrectly installed valve drive bolt

FY06 Accomplishments: Testing of Components

Future Work

- Study the effect of chemical environments (HI_x + H₃PO₄ and conc. H₃PO₄) on the tensile properties of Ta-10W
- Crack growth studies of Hastelloy DCB specimens in the HI gaseous decomposition environment
- Testing on the effect of chemical contaminants on Ta-alloys used in Section III
- Identify failure conditions associated with components with Ta cladding

