Photoelectrochemical Generation of Hydrogen Using Sonic Mediated Hybrid Titania Nanotube Arrays

Mano Misra

Principal Investigator Metallurgical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, 89557 Phone: 775-784-1603 Email: <u>misra@unr.edu</u>

May 15th, 2007

Project ID # PDP36

This presentation does not contain any proprietary or confidential information.

Overview

Timeline

Project start date: October, 2006

- Project end date: September, 2008
- Percent complete: 30

Barriers

- Barriers addressed:
 - AP. Materials efficiency
 - AQ. Materials durability
 - AR. Bulk material synthesis
 - AS. Device configuration and scale up

Budget

Partners

- Total project funding: \$ 3,650 K
 - DOE share: \$ 2,970 K
 - Contractor share: \$ 680 K
- Funding for FY06: \$ 1,657 K
- Funding for FY07: \$ 1, 993 K

- John Turner, National Renewable Energy Laboratory.
- *Nilkanth Dhere,* Florida Solar Research Institute.
- Praxair, USA.
- eco2 ltd., Denmark.

Objectives

Overall	Develop high efficiency photoelectrochemical cell using titanium dioxide nanotubular photo-anode and cathode for hydrogen generation by water splitting.
2006- 2007	 Develop new anodization technique to synthesize high quality and robust TiO₂ nanotubes with wide range of nanotube architecture. Develop single step low band gap TiO₂ nanotubes by modifying synthesis parameters. Develop kinetics and formation mechanism of the titanium dioxide nanotubes under different synthesis conditions.
2007- 2008	 Improve efficiency by mixed oxide and organic-inorganic semiconductor photoanodes. Develop Density Functional Theory (DFT) to identify and modify the electronic properties of nanotubes. Develop combinatorial approach to synthesize hybrid photo-anodes having multiple hetero-atoms incorporation in a single photo-anode. Develop new TiO₂ based cathodes to increase the efficiency of the photoelectrochemical cell.

Approach

Task A. Synthesis and fabrication of nanotubular titanium dioxide arrays by electrochemical anodization method.

- Ultrasonic mediated titanium dioxide (TiO₂) nanotube arrays
- Synthesis in organic medium
- Annealing of TiO₂ nanotubes
- Characterization of nanotubes

Task B. Band-gap modification and engineering.

- Photo-anode (Doping with hetero-elements)
- Photo-cathode (Group II-VI compound semiconductors)

Task C. Application of the nanotubular materials for photoelectrochemical generation of H₂ from H₂O.

- Test hybrid photoanodes
- Test hybrid photocathodes

Task D. Materials stability of hybrid TiO₂ nanotubular photo-anodes.

- Electrochemical methods
- Scanning Kelvin Probe analysis

Task E. Scale-up and process evaluation.

- Anodization scale-up
- Photoelectrochemical hydrogen generation in solar light

Novel methods for the formation of titania nanotubes

Conventional :

Acidified fluoride solution in the presence mechanical stirring

- 30 80 nm diameter
- 400 500 nm length
- Time: 45 min

Sonoelectrochemical acidic:

Acidified fluoride solution in the presence of ultrasonic waves

- 30-80 nm diameter
- 600-650 nm length
- Well ordered, compact, robust
- Time: 20 min

Sonoelectrochemical neutral :

Organo-fluoride solution in the presence of ultrasonic waves.

- 20-150 nm diameter
- 0.5 -15 µm length
- Smooth, compact
- Time: 0.5-12 hrs

Current transient graph for anodization in ultrasonic and stirring conditions.

Nanotubes vs Nanoparticles

1D nanotubular TiO₂

TiO₂ nanoparticles

- 1 D nanotubes have improved charge transport due to quantum confinement in radial direction.
- Charge recombination losses are lower in 1 D nanotubes.

- In nanoparticles / nanocrystalline material charge transport is by sluggish hopping mechanism.
- Charge recombination losses are higher due to increased grain boundary regions in particulate nanocrystalline material.

Cross sectional view of nanotubes

FESEM images of TiO₂ nanotubes: (A) high ridged concentration (B) thin ridged (C) smooth

> Preparation methods: (A) $H_3PO_4 + NaF$ (B) $EG + NH_4F$ $Glycol + NH_4F$

Hybrid TiO₂ nanotubes with various morphologies

Synthesis of wide range of TiO₂ nanotube structure

- Pore diameter and wall thickness can be tailored by varying anodization potential.
- Pore diameter ranging from 20 nm to 150 nm can be obtained.
- ➤ Wall thickness varied between 10 to 20 nm.
- Different TiO₂ structures will be used to study charge transport and recombination phenomenon.

Atomistic modeling and electronic properties of

nanotubular TiO₂ network

Lateral view of the (8,0) TiO₂

Preliminary results of DFT calculations for TiO₂ nanotubes

(a)

(a) Density of states (DOS)
 of the optimized TiO₂
 structure. The dashed
 line shows the Fermi
 level.

(b) Band structure of the TiO₂ nanotubes at selected crystal planes. The Fermi energy in the band-structure plot is shown to correspond to that in the DOS plot. 1 Fabrication by C-doping

TiO₂ synthesis in organic medium found to be beneficial for carbon doping:

A. Single step carbon doping after heat treatment.

B. Most of the carbon present, is in the form of doped carbon.

Effect of carbon source and doping method on the concentration of the doped carbon in TiO_2 matrix.

IPCE and band gap measurements

Current transient plots

SI. No.	Wavelength (nm)	Power mW/cm ²	Photocurrent, J _{ph} (mA/cm²)	IPCE
1	330, ±100 nm	13.92	1.6	48.80
2	400, ±15nm	2.51	0.11	15.08
3	450, ±15nm	3.71	0.07	5.90
4	500 , ±15nm	4.41	0.016	1.02
5	550 , ±15nm	5.05	0.029	1.45
6	600 , ±15nm	4.93	0.032	1.50
7	650 , ±15nm	4.47	0.030	1.45
8	700 , ±15nm	4.79	0.036	1.52

(J_{ph}hν)ⁿ n = 0.5 for indirect band gap, n = 2 for direct band gap

J_{ph} = Photocurrent,

 h_V = Photon energy = hc/λ

Tauc plots showing the indirect band gap of carbon doped TiO₂ nanotubes.

Determination of charge carrier density and flat band potential of nanotubular TiO₂

Charge carrier density = $N_D = 2/(E^*\epsilon^*\epsilon^0 m)$; where, E = elementary electron charge, ϵ = dielectric constant, ϵ_0 = permittivity in vacuum, m = slope of the V vs 1/C² plot.

Mott – Shottky plot of carbon modified hybrid TiO ₂ nanotubes	Specimen	Charge carrier	Flat band potential
1.E+09 9.E+08		density cm ⁻³	(bright), V _{Aq/AqCl}
8.E+08 - 7.E+08 - 7.E+08 -	As-anodized	1.1 x10 ¹⁷	- 1.2
E 6.E+08 - [™] 5.E+08 - [™] 4.E+08 -	N_2 annealed	2 x10 ¹⁹	– 1.15
3.E+08 - 2.E+08	O_2 annealed	1.2 x 10 ¹⁵	- 0.83
1.E+08 0.E+00 -0.75 -0.25 0.25	C-modified	3 x 10 ¹⁹	- 1.1
Potential, V _{Ag/AgCl}			

Photocurrent under different light illumination

Sample description : 0.7 cm^2 photoanode (C-modified TiO₂ nanotubes , 1 µm nanotube length, 50 - 55 nm diameter)

Illuminations	Power mWatt/cm ²	Photocurrent (max)(mA/cm ²)
Dark		0.01
Vis	5.27	0.8
520, ±46 nm		
UV	13.9	2.5
330, ±70 nm		
UV + Vis	87.0	3.3

Potentiodynamic plot of carbon modified TiO₂ photoanode under various illuminations.

Preliminary scale-up of photoanode

Anodization of 8 cm² titanium sheet produces uniform TiO_2 nanotubes.

Potentiodynamic plot using 8 cm² C-modified TiO₂ photoanode

Photocurrent of 8 cm² electrode \approx 24 mA Hydrogen = 9.6 mL/hr

Design of efficient photo electrochemical cell using Pt/TiO₂ as a cathode

TEM of Pt/TiO₂

Figure 1. A schematic of the photoelectrolytic cell designed for the generation of hydrogen using light source (UV+VISIBLE). The anode is carbon doped titania nanotubular arrays prepared by sonoelectrochemical anodization technique and the cathode is platinum nanoparticles synthesized on undoped titania nanotubular arrays

- The Pt/TiO₂ cathode with 0.4 wt% Pt is found to be as efficient as a pure Pt electrode.
- This electrode is prepared by simple incipient wetness method

Future Work

- Synthesis of hybrid photoanodes:
- Functionalization of TiO₂ nanotubes with organic compounds.
- Synthesis of mixed oxide nanotubes (Ti-Mn / Ti-W) by various methods like sputteringanodization, pulsed electrodeposition-oxidation, electrochemical deposition-anodization and co-precipitation on TiO₂ template.
- Synthesis of hybrid cathodes:
 - Pt surface with atomic layers of Pd-Ru-Rh-Re, Ru-Re, Rh-Re.
 - Preparation of inexpensive and robust cathode by fabricating TiO₂ with Ni, Pt, Cd-Te and Cd-Zn-Te.
- Investigation of the photoanode and cathode by microstructural and electrochemical characterizations.
- Kinetics studies of the titania nanotubes formation by the H_2O_2 titration and ICP analysis.
- Architect the shape of the nanotubes and photoanode to harvest sunlight more efficiently.
- Modeling of the TiO₂ nanotubes and investigation of their electronic properties by DFT.
- Stability studies by various characterization techniques and Kelvin-Probe measurements.
- Electrochemical cell with differential pH anode and cathode compartments.
- Scale-up set up for actual solar light harvesting.

Summary

- Relevance: Develop a stable and highly efficient photoelectrochemical cell for solar hydrogen generation by water splitting.
- Approach: Synthesize hybrid nanotubular TiO₂ composite arrays as photoanode and nanowires / nanoparticles of compound semiconductors as cathodes for improved photo conversion process.
- Technical accomplishments and process: Develop a single step electrochemical process for producing hybrid, low band gap TiO₂ photoanode having excellent photoelectroactivity.
- *Technology transfer/ collaboration*: Active partnership with NREL for materials characterization.
- Proposed future research: Develop new doping methods to reduce band gap of TiO₂ nanotubes, inorganic-organic hybrid materials for better electron transport; mixed oxide photoanodes to harvest full spectrum of sunlight, develop inexpensive cathodes using nanowires / nanoparticles of compound semiconductors; scale-up testing for actual solar light harvesting.