RUSS COLLEGE of Engineering Technology

Adapting Planar Solid Oxide Fuel Cells for Distributed Power Generation Project PDP 40

Dave Bayless, Jason Trembly, Greg Kremer, Ben Stuart, and Andres Marquez

Objectives

Program Objectives

- Quantify impacts of synthesis gas composition on performance of a commercial planar solid oxide fuel cell system (cell and stack)
 - $-H_2S$ content
 - CO/H₂ ratio and energy content of gas
 - Particulate
 - Metal content
- Demonstrate long term operation of pSOFCs using actual sold fuel-derived synthesis gas

Overview

Timeline

- Project start 10/2/2003
- Project end date 10/1/2008
- Percent complete 80%

Budget

- Total project funding
 - DOE share \$3,903,000
 - Contractor share \$1,023,000
- Funding received in FY06: \$0
- Funding for FY07 \$0

Barriers

- DOE Technical Barriers for Distributed Generation
 - Improved CO tolerance
 - Develop CHP fuel cell systems
 - Verify integrated stationary fuel cell systems
 - Mitigate technical barriers to stationary fuel cells
- DOE Technical Targets for 2010
 - 40,000 hours durability
 - \$1000/kWe

Partners

- SOFCo-EFS (Fuel Cells)
- Case Western Reserve University
- University of Cincinnati
- State of Ohio's Air Quality Development Authority
- BAARD (Power Generation)
- Enercon (Gasification/Steam Reforming)

Methodology

- •Galvanostatic operation (0.21 \pm 0.01Amps/cm²) at 850°C utilizing simulated O₂ blown Pittsburgh No.8 coal syn gas
- •PSOFC Area Specific Resistance (ASR) measured by completing V-I scans; ASR histories plotted and studied
- Voltage (power) performance over time monitored and studied
- Material analyses on the anodes (before and post tests): scanning electron microscopy (SEM), x-ray diffraction (XRD), and X-Ray Photoelectron Spectroscopy (XPS); to determine if any structural or composition changes had taken place.

Results

Stack Power per Cell – Stack 3 12 80 Bubbler Temperature 70 10 60 8 Power 0 0 00 Bubbler Temperature, °C Power, Watts/cell 4 20 28% CO,18% H₂23% N₂,31% H₂O $H_2 N_2$ ~3.5% H₂O, 48.25 H₂, 48.25% N₂ 2 10 Û 100 150 250 0 50 200 300 350 400 450 500 Elapsed Time, hours

Power and bubbler temperature traces for a two-cell stack, running with syngas for about 170 hours. The bubbler temperature was raised to 70 °C to ensure high water content (30-31% in the mixture), for 170 hours to match CO injection

Results

Power and bubbler temperature history for the test of a twocell stack (Stack 4), with syngas and H_2S . CO was introduced after 165 hours; H_2S was added after 219 hours

Results

Stack Power Degradation - Stack 5

Power trace for a test of a two-cell stack (Stack 5) with only H_2/N_2 and H_2S . After 100 hours, H_2S was introduced (119-120 ppm) and was kept constant until the conclusion of the test at 1000 hours.

Conclusions

- Effects of coal syngas, with and without H₂S, were studied on the performance of short-stack pSOFC
- Results indicate that the separate effects of water content, CO, and H₂S can have significant deleterious effects on the longterm stack performance.
- The introduction of 119-120 ppm of H₂S caused an immediate power decay of approximately 10%. Tests with syngas and H₂S had an average final power decay rate per 500 hours of 23%, almost double that for tests with only H₂ and H₂S (12%).
- Material analysis suggest that the presence of GDC improved the sulfur tolerance of the individual cells, but other components of the stack system require more analysis.

Background

- Analysis was done to find what species in biomass and coal syngas would potentially affect performance of SOFCs
- Modeling was done to identify the possible species
- Experimental work was then done to quantify the effect

- Trace Species in CSG
 - Trace elements contained in syngas are classified into three groups base upon their volatility [1].
 - Class I: Least volatile, will remain in the ash.
 - *Class II*: More volatile, partition between condensed and gas phases.
 - *Class III*: Volatile, show little to no tendency to condense.
 - Previous reports have shown the presence of As, P,
 Sb, Cd, Be, Cr, Hg, K, Se, Na, V, Pb, Zn.

Thermodynamic Evaluation

- Thermodynamics were used to determine the condensation behavior of trace species contained in syngas
 - Gaseous species are assumed to travel to SOFC module
 - Solid species are assumed to have a 100% removal efficiency
 - System temperatures and pressures were varied from 200-500°C and 1-15atm.
- Thermodynamic analyses of the anode was also completed based upon warm gas cleanup results
 - Study evaluated anode composition (Ni, ZrO_2 , and Y_2O_3)
 - Study completed over SOFC operational temperatures 700-900°C and anticipated pressures 1-15atm

Thermodynamic Evaluation Trace Species Contained in Coal Syngas [1,7-11].

Component	Concentration (ppmv)	Volatility Class	
AsH ₃	0.6	II	
HCI	1	III	
PH ₃	1.91	II	
Sb	0.07	II	
Cd	0.011	II	
Be	0.025	II	
Cr	6	II	
Hg	0.025	II	
K	512	I	
Se	0.15	II	
Na	320	I	
V	0.025	II	
Pb	0.26	II	
Zn	9	II	

Thermodynamic Evaluation

Trace Species Behavior [10].

Component	Behavior		
As	Gas/Solid		
Р	Gas/Solid		
Sb	Gas		
Cd	Gas/Solid		
Be	Solid		
Cr	Solid		
Hg	Gas		
K	Solid		
Se	Gas/Solid		
Na	Solid		
V	Solid		
Pb	Gas/Solid		
Zn	Solid		

As/Anode Interactions

 $AsH_3(g) + Ni(s) \rightarrow NiAs(s) + 1.5H_2(g)$

Equilibrium Pressures of AsH₃ at SOFC Operation Conditions at the Inlet (a) and Outlet (b) [10].

P/Anode Interactions

 $2PH_3(g) + 5Ni(s) \rightarrow Ni_5P_2(s) + 3H_2(g)$

Equilibrium Pressures of PH_3 Associated with Equation 9 Over SOFC Operation Conditions at the Inlet (a) and Outlet (b) [10].

Trace Metal Oxidation

$$Pb(g)+0.5O_{2}(g) \rightarrow PbO(s)$$
$$Cd(g)+0.5O_{2}(g) \rightarrow CdO(s)$$
$$Hg(g)+0.5O_{2}(g) \rightarrow HgO(g)$$
$$Ni(s)+0.5O_{2}(g) \rightarrow NiO(g)$$

O₂ Equilibrium Partial Pressures [10]

T(°C)	pO ₂ (syngas)	pO ₂ (Pb)	pO ₂ (Cd)	pO ₂ (Hg)	pO ₂ (Ni)
700	1.60E-17	9.80E-15	8.50E-07	7.50E+15	5.42E-17
800	6.40E-15	1.00E-10	3.50E-03	1.90E+17	1.20E-14
900	9.80E-13	2.20E-07	3.40E+00	2.70E+18	1.04E-12

Chlorine in Syngas

- Found as sodium and potassium chlorides in 0.01% to 0.5% in weight.
- Nearly all the chlorine in coal is converted to HCI in the reducing environment of coal gasification.
- HCI concentrations as high as 500 ppm have been measured in raw syngas [1].
- Up to one-third of chlorides in coal syngas may remain after water scrubbing [2].

Chlorine in Syngas

$Ni(s) + 2HCl(g) \rightarrow NiCl_2(s) + H_2(g)$

Gibb's Free Energy of Reaction over SOFC Operating Temperature Range, 0.29atm H_2 , 20ppm and 160ppm HCI.

Experimental

Test Stands

- •Furnace units capable of 1000°C
- Solartron EIS unit
- •Built in data acquisition using National Instrument's Labview
- Alicat mass flow controllers (eight units) meter gas delivery
- Integrated safety system on stands and in containment room

Experimental

Button Cells

Screen Printed Top Layer and Button Cell Setup

Effect of HCI on SOFCs

Performance Degradation Rates Over 100hrs

Temperature (°C)	HCI Concentration (ppm)			
	0	20	160	
800	0.5	17.4	26.1	
900	1.2	13.3	51.8	

Results: 20ppm and 160ppm HCI

Results: 20ppm and 160ppm HCI

EIS Data for SOFC Operating at 800°C and 0.7V Over Time with HCI Concentrations of 0ppm, 20ppm, and 160ppm [11].

Results: 20ppm and 160ppm HCI

SEM Image of SOFC Cross Section and EDS Linescan. [11].

Results: H₂S and HCI Comparison

Conclusions

- HCl concentrations of 20ppm and 160ppm cause SOFC performance losses.
- The performance losses are reversible.
- It is believed that physical adsorption of CI onto Ni reaction sites is the cause of performance loss.
- Reduction of HCI to levels below 1ppm will not cause any SOFC performance losses.

AsH₃

- Found in concentrations from 0.5-2090 ppmw [14-16].
- Nearly all the As is converted to AsH₃ in the reducing environment of gasification
- Form may change over hot/warm gas cleanup contiditons.
- AsH₃ concentrations as high as 0.6 ppm have been measured in syngas derived from coal [17].
- As has shown to cause poisoning of steam shift catalyst
- Thermodynamics show that 0.15-0.6 ppmv AsH₃ may react with Ni to form secondary nickel arsenide phases.

Results: 1 ppm AsH₃

Results: 2 ppm AsH₃

SOFC Power Density Operating at 800 °C and 0.25 Acm⁻² Over Time with AsH₃ concentration of 2 ppm.

Results: Extended Testing

SOFC Power Density Operating at 800 °C and 0.25 Acm⁻² Over Time with AsH₃ concentration of 0.1 ppm.

Results: Post Trial Analyses (As)

Representative SOFC anode cross section at 200x.

Results: Post Trial Analyses

EDS spectrums from point shown in extended trial test with 0.1 ppm AsH₃.

AsH₃ Conclusions

- Results show that secondary nickel arsenide phase is able to form.
- 1 and 2 ppm AsH₃ causes little degradation initially.
- After 100 hrs of operation 1 and 2 ppm AsH₃ shows to cause some degradation.
- AsH₃ effect on SOFC not nearly as acute as other trace species such as HCI or H₂S.
- The kinetics associated with the formation of nickel arsenide are slow.
- The nickel arsenide phase that forms is not purely resistive.
- Longer term tests (> 1500 hrs) are recommended to better understand the formation of secondary nickel phase.

References

- 1. J. Ratafia-Brown, L. Manfredo, J. Hoffmann, M. Ramezzan, Major Environment Aspects of Gasification-Based Power Generation Technologies: Final Report, U.S. Dept. of Energy, 2002, pp.39-59.
- 2. SECA/DOE, <u>http://www.seca.doe.gov/</u>, Sep. 23rd 2004.
- 3. M.C. Williams, J. Strakey, and W. Surdoval, J. of Power Sources, 143 (2005) pp.191-196.
- 4. J. Trembly, R. Gemmen, and D. Bayless, <u>A study of the transport of coal syngas through an SOFC electrode</u>, 2006 Pitt Coal Conference.
- 5. R. Gemmen, and J. Trembly, J. of Power Sources, 161, pp.1084-1095 (2006).
- 6. J. Trembly, A. Marquez, T. Ohrn, and D. Bayless, J. of Power Sources, 163 (2006) pp.263-273.
- 7. S. Shaffer, Fuel Cells Bulletin, pp.2, November, 2003.

References

- 8. T. Kivisaari, P. Bjornbom, C. Sylwan, B. Jacquinot, D. Jansen, and A. de Groot, "The feasibility of a coal gasifier combined with a high temperature fuel cell," Chemical Engineering Journal, 100, pp.167-180, 2004.
- 9. P., Degterov, S.A., Eriksson, G., Hack, K., Manfound, R.B., Melancon, J., Pelton, A.D., Peterson, S., 2002. FactSage thermochemical software and databases, GTT-Technologies, Germany, Calphad 26, 189-228.
- A.W. Wang, Task 3.5: Poison Resistant Catalyst Development and Testing, Design and Construction of the Alternative Fuels Field Test Unit and Liquid Phase Methanol Feedstock and Catalyst Life Testing at Eastman Chemical Company: Topical Report, U.S. Dept. of Energy, 1997, pp.3-21.
- 11. A.E Pigeaud and J.J. Helble, "Trace specie emissions for IGFC," PFBC Review Meeting, Morgantown, WV, June 21-23, 1994.
- 12. J. Trembly, R. Gemmen, D. Bayless, J. Power Sources, 163, pp.986-996 (2007).
- 13. J. Trembly, R. Gemmen, D. Bayless, J. Power Sources, Accepted.

Acknowledgments

This work is partially supported by generous grants from the Department of Energy under grants DE-FT36-03GO13059 and the Ohio Coal Development Office (of the Ohio Air Quality Development Authority) under contracts OCRC B4.1-4.1, B1-4.7, and D1.17. Thanks to all the staff and students in the Ohio Coal Research Center for their outstanding efforts and to all our partners, especially NETL-Morgantown.