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Program Objectives

ObjectivesObjectives

• Develop technology to aid in creation of a 
viable “distributed energy” system

Provides electricity from stationary solid 
oxide fuel cells
Provide heat from the fuel cells
Provide useable hydrogen from the 
synthesis gas

• Integrate CHP into distributed H2 production
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OverviewOverview

• Project start 9/1/2005
• Project end date 10/1/2008
• Percent complete 50%

• Total project funding
– DOE share $1,091,000

– Contractor share $ 343,000

• Funding received in FY06: $0

• Funding for FY07 $0

Budget

Timeline Barriers

Partners

• DOE Technical Barriers for Distributed 
Generation

– Develop CHP fuel cell systems
– Verify integrated stationary fuel cell 

systems
– Mitigate technical barriers to stationary 

fuel cells
• DOE Technical Targets for 2010

– 40,000 hours durability
– $1000/kWe

• University of Cincinnati
• State of Ohio’s Air Quality Development 

Authority
• University of North Dakota
• CTP Hydrogen
• U.S. Department of Energy
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Interactions and CollaborationsInteractions and Collaborations

Academic and Industrial Partnerships

• University of Cincinnati
• State of Ohio’s Air Quality Development 

Authority
• University of North Dakota
• CTP Hydrogen
• U.S. Department of Energy
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Combined Heat, Power, Fuel, H2 and Carbon Recycling

Fuel Feeder

H2O + O2 + Fuel

Reaction chamber

Electrostatic
Cyclone

Return from
Cyclone

Gasifier

Water Gas Shift

CO/H2
Separation

H2 for automotive PEM

Enriched CO + H2
to SOFCs

bayless@ohio.edu

Fischer-Tropsch
Synthesis

Integrated Energy VisionIntegrated Energy Vision

Carbon dioxide

Algae
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Planar Solid Oxide Fuel Cells
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• What is a perovskite?

– General composition: ABO3

• e.g. LaSrVO3

– Varying amounts of A and B 
components affect material 
properties such as electronic 
conductivity and catalytic 
activity

Perovskites for sulfur tolerance

Sulfur Tolerant AnodesSulfur Tolerant Anodes
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ExperimentalExperimental

Test Stands
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ExperimentalExperimental

Screen Printed Top Layer and Button Cell Setup
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Sulfur Tolerant AnodeSulfur Tolerant Anode

VI Scan Results for Nextcell Anode and Nextcell Anode with Sulfur 
Tolerant Top Layer Utilizing Coal Syngas with 160ppm H2S.
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Sulfur Tolerant AnodeSulfur Tolerant Anode

EIS Results for Nextcell Anode and Nextcell Anode with Sulfur Tolerant 
Top Layer Utilizing Coal Syngas with 160ppm H2S.
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Model ApplicationModel Application
SOFC Anode Characteristics

Anode Electrode Properties [Trembly]

Parameter Value

Thickness, L 0.002 m

Tortuosity, τ 3.6

Permittivity, Ψ=ε/τ 0.156

Mean Pore Diameter, <r> 1.07 μm
Operating Temperature, T 800oC
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Model ApplicationModel Application
Pressure Effects

Hydrogen profiles through the electrode at 500 mA/cm2.  
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Model ApplicationModel Application

Pressure Effects

H2 mole fraction at the anode-electrolyte interface, and 
concentration overpotential loss due to gas phase diffusion (500 mA/cm2)
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Hydrogen GenerationHydrogen Generation

Chemical Electrolysis using MEICs

Schematic of H2 generation using chemically drive hydrolysis (CTP-Hydrogen)
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H2 generation by chemically driven electrolysis

Hydrogen GenerationHydrogen Generation

Chemical Electrolysis using MEICs
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Ceramic Membranes for H2 SeparationCeramic Membranes for H2 Separation

SrCe0.90Yb0.05Tm0.05O3-d (S2), 
SrCe0.85Yb0.05Tm0.05Zr0.05O3-d (S4), 
SrCe0.75Yb0.05Tm0.05Zr0.15O3-d (S6), and 
SrCe0.65Yb0.05Tm0.05Zr0.25O3-d (S8) 
were prepared by using EDTA-citric acid 
combined complex method with total metal ions 
and pH value were kept to 1.6: 1.0: 1.0 and 6.0 
respectively. The gel was then heated at 120-
150°C for several hours to make primary 
powders, which was calcined at 900°C for 5 h. 
The resulted powders were pressed into disks 
and sintering at 1500°C for 24 hours. SEM 
images of the disks are shown (Guliants)

SCTM Membranes
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Ceramic Membranes for H2 SeparationCeramic Membranes for H2 Separation
SCTM Membranes

Hydrogen permeation cell
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Ceramic Membranes for H2 SeparationCeramic Membranes for H2 Separation
SCTM Membranes
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Ceramic Membranes for H2 SeparationCeramic Membranes for H2 Separation
SCTM Membranes
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Gasification to Optimize H2 ProductionGasification to Optimize H2 Production

Solids Feeder

Reaction chamber

Electrostatic
Cyclone

Return from
Cyclone

Gasifier

H2O + O2 + Fuel

Indirect Fluidized Bed Gasification
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Gasification to Optimize H2 ProductionGasification to Optimize H2 Production

CH4 + 2O2 → CO2 + 2 H2O ΔH = - 802.0 kJ/mol

Pyrolysis (devolatilization)

C + H2O → CO + H2 ΔH = + 119.3 kJ/mol
C + CO2 → 2 CO ΔH = + 170.0 kJ/mol
CH4 + H2O → CO + 3 H2 ΔH = + 206.1 kJ/mol
CH4 + CO2 → 2 CO + 2 H2 ΔH = + 247.3 kJ/mol
CO + H2O → H2 + CO2 ΔH = - 41.15 kJ/mol

Indirect Fluidized Bed Gasification

Governing Reactions
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Gasification to Optimize H2 ProductionGasification to Optimize H2 Production
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Gasification to Optimize H2 ProductionGasification to Optimize H2 Production
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