

Innovative Hydrogen Liquefaction Cycle Gas Equipment Engineering Corporation

May 15, 2007

Presentation at DOE 2007 Merit Review

This presentation does not contain any proprietary, confidential, or otherwise restricted information

LIQUEFIER DEVELOPMENT PROGRAM

US DOE R&D Grant - Hydrogen Production and Delivery

Program Topic - Hydrogen Delivery Subtopic – Hydrogen Liquefaction

Budget

<u>Timeline</u>

\$2.518 M for Pilot Plant Design, Fabrication, and Testing

- Cost Share
 - \$2.0 M from DOE
 - \$0.518 M from Contractor
- \$161K Received in FY06
- \$500K Planned for FY07

- Project restart date Jan '07
- Project end date Dec '09
- Percent complete 8%

GAS EQUIPMENT ENGINEERING CORPORATION

Founded in 1921 as a manufacturer of industrial gas production equipment

Early GEECO CO₂ Plant

GEECO Produces O2 and N2 Generators for US Navy •CV 14 in 1962, through •CVN 78 in 2007

The O2/N2 Producer that GEECO supplied for the USS Nimitz (CVN68) in 1968 is still operating reliably today

Project Partners

Team Member

Gas Equipment Engineering Corp.

Avālence

R&D Dynamics Bloomfield, CT

MIT Cambridge, MA

Responsibility

- Contract Administration Detailed Design Liquefier Fabrication System Testing
- Project Coordination System Integration
- Turbo-Expander Design and Fabrication
- Cycle Evaluation & Modeling He Liquefier Experience

Proposed Project Approach

Evaluate Alternative Cycle Approaches

- Target High Efficiency/ Low Cost
- Enable Unique Cycle Cost/Performance Trade-Offs

Scaleable to >50,000 kg/day Systems

Present Capital Versus Operating Cost Trade-Off at 200, 2000, 20,000, 200,000 kg/day

Target Cycle Performance Projections To Exceeding DOE Efficiency Target of 3.6 kWh/kg

✤Build Small Scale Pilot Plant of ~ 200 kg/day

Overall Project Schedule

PROJECT TIME LINE											
	Q1 07	Q2 07	Q3 07	Q4 07	Q1 08	Q2 08	Q3 08	Q4 08	Q1 09	Q2 09	Q3 09
Cycle Design											
Detailed System Design											
Design and Build T/E											
Procure Major Components											
Build Pilot Plant											
Test Plant											

Initial Phase Schedule

PHASE I TIME LINE												
	Jan	Feb	Mar		April	May	June		July	Aug	Sept	
Cycle Options Defined												
Peliminary Cycle Definitions												
Cycle Performance Modelling												
Cycle Economic Comparison												
Specify Turbo Expander Requirements												
Cycle Selection				*								
Quarterly Progress Report				*				*				*
Design Review												*

First Year Project Challenges

Challenge Historical Technology "Wisdom"
 Find H2 Para/Ortho Equations of State
 Develop Simple and Scalable Economic
 Assessments of Potential Cycles

"Optimize" the Design of Potential Cycles
 Restructure Project Due to Long Delays in Funding

Required Change in Technical Partner

Produce Pilot Plant Design With Optimized Scale

System Size Versus Available Components

Present State of the Art H₂ liquefaction - Claude cycle

Technology Background

- Present "State of the Art" Operates at ~30 to 35% of Carnot Efficiency (Linde)
- Work by Quack (2002) Claims a Practical Limit of About 60%
 - To Achieve This a Very Elaborate and Expensive Set of Components was Required
- MIT He Liquefier Experience Using Hydraulic Motors Will Be Examined for H₂ Systems
- More Experience with He Cryogenic
 - **Expanders Exists**
- Consider Acoustic Sterling Based on Recent Advances

Ideal Work Of Liquefaction

$$W_{ideal} = W_{cooling} + W_{conversion} + W_{condensation}$$

$$W_{cooling}$$
Reduce H₂ Gas Temperature
$$W_{conversion}$$
H₂ Conversion to Para State

*W*_{condensation}

Gas to Liquid Conversion

Para Concentration And Heat Of Conversion vs. Temperature

Initial Task was to Find Documented Equation of State (EOS) Information Useful for Ortho or Non-Equilibrium Ortho/Para H₂

Result: REFPROP 8.0 from NIST (Currently in Beta Testing) New EOS (Leachman) for n-H₂ and p-H₂ Accurate at Higher Pressure Range and in Critical Region

Work Of Cooling And Conversion vs. Final Temperature

The Ortho-Para Conversion Load is a Significant Portion of the Total Liquefaction Load

Effect of Initial Pressure on Ideal Work of Liquefaction

The "Correct" Initial Pressure Can Be Found to Optimize the Total Work Input

Potential Cycle Alternatives

- Explore "Once Through" Cycle Design
 Minimize H₂ Compressor Size
- ➢Vary H₂ Pressure to System Advantage
 - Elevate System Pressure "Just Enough"
 - Replace JT Valve with Hydraulic Motor
 Higher Efficiency Method to Reduce Pressure Back to Ambient
- Evaluate Performing Cooling "Work" In A
 - Variety of Ways
 - ✤Turbo-Machinery Directly on H₂ Flow
 - Turbo-Machinery in Separate Cooling Loops Via HXC
 - Acoustic Sterling for Higher Temp Stages

T-S Diagram For Normal Hydrogen

Pressures Above 20 bar Enable the Use of Hydraulic Motors For 100% Liquefaction Conversion

Possible Cycle Single Pass, Low-Pressure H₂ Liquefaction

Simple Design, Single Pass, High-Pressure H₂ Liquefaction

	E	F	G	<u> </u>		J	<u> </u>	L	<u> </u>	N		P	Q	B	S	<u> </u>	0	V	₩	<u>×</u>
	Т	P	h	s			XO	хр	hn	hp	sn	sp								
	300	0.001					0.74928	0.25072	3958.889	4455.076	72.56237	75.83041								
			4482.579	81.62769	1		0.74928	0.25072	4482.605	6 4455.076	81.62777	75.83041								
						OFFSETS	5		523,7162	2 0	9.065407	0								
audrogen	properties															_				
igarogen Stato	T IV1	D MAD -1	h fk Ukal	cik lika V	1				hn.	ho.	CD	CD								
state	200	in line al Aŭ	4717-20E	27 COEOE			0 74929	ο 25072	A 717 224	np 1 Aco7 200	27 00004	21 00#27								
,	254 007	40	4046 222	2E 27267			0.747694	0.20072	A040 520	2070 702	25 2724	20 22721								
	204.307	40	4040.323	2.2629	1		0.141034	0.202007	4046.026	A07 5201	50.2734	23.33731								
<u>,</u>	20	40	400.1100	-3.3523			0.001633	0.336307	330.3276	9 407.0231	0.600060	-3.41365								
																_				
																_				
								1												
Helium Cy	icle							mdot H2				<u> </u>						•		
State	т [К]	P [MPa]	h[kJ/kg]	s [kJ/kg-K] mdot [kg/	's]		1.0								compre	essor			
1	300	10	1595.408	18.47284	44.82672	-		L L		1							1			
2	285.7143	0.5	1490.565	24.43057	44.82672	2								_	T1	300.0	T2	285.7		
3	53.64798	10	302.2011	9.360715	44.82672	2	To	300.0	T2	285.7	top	300.0	T1		P1	10.0	P2	0.5		
4	34.185	0.5	182.3902	13.36715	44.82672	2			mdot2	44.8	HX1	44.8	mdot1							
5	20	10	110.9957	3.755839	0)	Td	255.0	T4	34.2	bottom	53.6	T3							
6	19.04762	0.5	101.2419	10.22593	44.82672	2														
3i	62.74474	10	352.4409	10.22593				<u>ا</u>		T I		۱. L	<u> </u>	44.8	mdot3	expand	er 1			
															T3	53.6				
							Td	255.0	T4	34.2	top	53.6	T3		P3	10.0				
									mdot4	44.8	HX2	0.0	mdot5				T6	19.0		
							Te	20.0	T6	5 19.0	bottom	20.0	T5				P6	0.5		
								L L		1			<u> </u>							
														350.0 -						
														300.0						
Constrain	t Equations	5:		Variable Co	onstraints		True if > 0		Entropy G	ieneration	these sho	ould be posi	tive		- N		_			
HX1	3.37E-08	First law, I	HX1	285.71	T2 <= T1	300.00	14.29		HX1	85.05				250.0		<u> </u>		<u> </u>		
HX2	1.83E-07	First law, I	HX2	285.71	T2 <= To	300.00	14.29		HX2	102.19				1				\mathbf{N}		
equate dT	i 0			34.19	T4 <= T3	53.65	19.46		exp1	38.78				200.0				\rightarrow		
				34.19	T4 <= Td	254.99	220.80							1						
				34.19	T4 <= T2	285.71	251.53		sum	226.017				1 150.0				$ \rightarrow $		
				19.05	T6 <= T5	20.00	0.95													
				19.05	T6 <= Te	20.00	0.95							1 100.0		`	1			
				19.05	T6 <= T4	34.19	15.14							1			11			
				100	x1x=1	100	0.00	1						500						
				254.99	Td ca To	300.00	45.00							1 *** T						
				20.00	Teke Td	254.99	234.99													
				0.00	O ce all T	1.00	100							0.0 +				,	,	
						1.00												-	,	

H₂ Properties in Excel

- Lookup Table for o-p Concentration
- Offsets Calculated from Zero Pressure Properties (Haar et. al.)
- Properties of n-H2 and p-H2 Called from REFPROP 8.0 Using Leachman EOS

=Enthalpy("parahyd","TP","SI",E9,F9)

- Offsets Applied to n-H2 Enthalpies and Entropies
- Properties Combined Using Mixture Equations

hydrogen p	properties									
State	T [K]	P [MPa]	h [kJ/kg]	s [kJ/kg-K]	ХО	хр	hn	hp	sn	sp
с	300	40	4717.305	37.695946	0.74	928 0.25072	2 4717.334	4687.396	37.69604	31.89437
d	77	40	1340.734	16.801672	0.492	654 0.507346	6 1517.508	1002.323	18.53103	9.600858
е	20	40	408.7108	-3.3529	0.001	693 0.998307	930.9276	407.5291	5.633563	-3.419647

Cycle Simulation Parameters

Cycle was Simulated with Combinations of the Following:

- Turbine Adiabatic Efficiency: 80%, 90%
- *****Heat Exchanger Pinch Point ΔT/T: 5%, 3%
- ✤Hydrogen Pressure: 15 bar, 20 bar, 25 bar

Helium Pressure Ratio: 5, 6, 7

≻Cycle Efficiency Ranged from 36% to 52%

Sample of Cycle Simulation Results

Main Features of Selected Approach

- >Once-Through H₂ Liquefaction 100% Yield
- Collins-Style cycle with He as Working Fluid
- **Constant, Supercritical Pressure in H₂ Loop**
- Components Use Established Technology and Facilitate Scalability
- Efficiency Through Effective Staging
- > POTENTIAL TO INCREASE EFFICIENCY BY 30% OVER PRESENT STATE-OF-THE-ART
- CONVENTIONAL COMPONENT USE AT REDUCED FLOW RATE PROMISES LOWER CAPITAL COST

Next Steps in Project Work

- >Integrate HX Model into Cycle Simulation
 - Determine Required Heat Exchanger UA and Hydrogen "View Factors" in Three Channel HX
- Gather Compressor and Expander Performance and Cost Data
- Simulate Several Additional Cycles
- Investigate Sensitivity of Various Parameters on Cycle Efficiency
- Get Feedback from Turbo-Expander Development Partner