

Investigation of Bio-ethanol Steam Reforming over Cobalt-based Catalysts

Umit S. Ozkan (P.I.) Hua Song Lingzhi Zhang

Department of Chemical and Biomolecular Engineering Heterogeneous Catalysis Research Group The Ohio State University

May 15, 2007

Project ID#: DE-FC36-05GO15033 PDP-6

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Start Date - May 1, 2005
 End Date - April 31,2009
 40% Complete

Budget

Total project funding

 \$1,145,625 (DOE)
 \$299,715 (OSU cost share)

 Funding received in FY05

 \$100,000(DOE)
 \$10,458 (OSU Cost share)
 Funding received in FY06
 \$185,000 (DOE)
 \$147,987 (OSU cost share)

 Funding received in FY07 (to date)

 \$290,473 (DOE)
 \$25,037 (OSU)

Barriers

- A. Fuel Processor Capital Costs
- C. Operation and Maintenance
- D. Feedstock Issues

Partners

 NexTech Materials, Ltd. -Catalyst manufacturing scaleup

PNNL - Economic analysis and feasibility considerations, deactivation studies

Objectives and Prior Work Summary

- Overall: To acquire a fundamental understanding of the reaction networks and active sites in bio-ethanol steam reforming over Co-based catalysts that would lead to
 - > Development of a precious metal-free catalytic system which would enable
 - Low operation temperature (350-550°C)
 - High EtOH conversion
 - High selectivity and yield of hydrogen
 - Minimal byproducts such as acetaldehyde, methane, ethylene, and acetone
 - Understanding of the catalyst deactivation and regeneration mechanisms
 - Low cost for commercialization.

June 2005-Sep 2006

- Launching the project, setting up the experimental systems and establishing the experimental protocols
- Investigating the effect of synthesis parameters on catalyst performance
- Testing activity of the initial catalyst system.

* FY06:

- Understanding the competing reaction networks
- Identifying active sites during reaction
- Optimizing catalyst pretreatment parameters

Approach

Supported Co-catalysts

calcination process have been observed.

Further Characterization of the Calcination step

LABRAM HR-800 High Resolution Raman Microscope

OLYMPUS BX41 microscope

In the current study:

- Sample is placed in Operando Cell;
- 50X magnification;
- Argon ion green laser (514.5nm);
- ✤ 3mW.

CoO is an intermediate in calcination of the catalyst precursor before the Co_3O_4 phase forms.

Further Characterization of the Reduction step

7

In-Situ DRIFTS - CO Chemisorption

correlates well with the metallic surface area.

[2] Mattos, L.V., Noronha, F.B. J. Power Sources 152 (2005) 50-59; g

Reaction Network and Intermediates: In-Situ DRIFTS-Ethanol TPD

CH₂

0

Ŵ

CH₂

CH2

1552, 1441, 1346cm⁻¹ Adsorbed CO₂ 2361, 2338cm⁻¹ O=C=O stretching Molecularly adsorbed ethanol^[3] 1383cm⁻¹: C-H bending 1294cm⁻¹: OH bending [1] Erdöhelyi, A., et al. Catal. Today, 116 (2006) 367. [2] Guil, J.M., et al. J. Phys. Chem. B, 109 (2005) 10813 [3] Raskó, J., et al. Appl. Catal. A: Gen., 299 (2006) 202 10

M-OH

>Water and ethanol molecules are adsorbed onto the surface at room temp

>Interaction with OH groups

>Water facilitates formation of ethoxy and acetate surface intermediates at lower temp.,

>CO (characteristic peaks: 2200~2000cm⁻¹) is not observed

Reaction Network and Intermediates:

Reaction Network and Intermediates: In–Situ DRIFTS-Acetone TPD

- >Acetone molecules are adsorbed onto the surface at room temp.
- ➢ Evidence of C-C-C and C=O
- >The cracking of acetone at lower temperatures
- >Acetate species form at higher temperatures compared to ethanol TPD

Reaction Network and Intermediates: Acetone TPD (MS-TGA-DSC)

MS Signal (a.u.)

Reaction Network and Intermediates: In-Situ DRIFTS-Acetaldehyde TPD

>Acetaldehyde molecules are adsorbed onto the surface room temp.;

- >Part of the adsorbed acetaldehyde is reduced to ethoxide
- Part of the acetaldehyde is oxidized to acetate at room temperature;

>Acetaldehyde is the surface intermediate during ethanol TPD

M-OH 3650~3150cm⁻¹: O-H stretching CH₂- or CH₂CH₂-2980, 2940, 2889cm⁻¹: C-H stretching Adsorbed CO₂ 2366, 2355cm⁻¹: O=C=O stretching **Acetates** 1556, 1442, 1360cm⁻¹ Adsorbed acetaldehyde [1,2] 2736, 1267, 1025cm⁻¹ Monodentate acetoxide 1180,1161, 1100cm⁻¹ CCO stretching Molecularly adsorbed acetaldehyde 1745cm⁻¹:O=C- stretching

- [1] Carlo Resini, et al. React. Kinet. Catal. Lett., 90 (2007) 117-126
- [2] J. Llorca, et al. J. Catal., 227(2004) 556-560

Reaction Network and Intermediates: Acetaldehyde TPD (MS-TGA-DSC)

Intensity (a.u.)

Reaction Network and Intermediates: In–Situ DRIFTS-Acetic Acid TPD

>Acetic acid molecules are adsorbed onto the surface at room temp.

Surface acetates are observed even at room temp.

> Molecularly adsorbed acetic acid disappears along with increase of temp.

>Linearly adsorbed CO₂ present without experiencing carbonate intermediate.

The assignment of surface

acetate species is confirmed

In-Situ DRIFTS-Ethanol TPD on Bare Support

>C-H bonding is observed at higher temp., compared with Co impregnated sample.

>C-C bonding is seen at higher temp., compared with Co impregnated sample.

> Ethoxide species disappear at higher temp., compared with Co impregnated sample.

Effect of T on Reaction Network: TPRxn - Acetone +H₂O

Sample: 10%Co/ZrO₂ *****Pretreatment:

400°C for 30 min; Reduced at 350°C for 2h under $5\%H_2/He$; Degassing at 400°C for 1h under He

*****Reaction:

 $CH_{3}COCH_{3}:H_{2}O=1:10$ (molar ratio) Total flow=55ml/min. Ramp rate:10°C/min. *****Experiment:

Monitoring product stream with MS

I.

П.

 $CH_3COCH_3+H_2 \cap C_3H_6+H_2O; CH_3COCH_3+H_2O \cap CO_2+2CH_4$

CH₃COCH₃+3H₂O **0** 2CO+CO₂+6H₂

 $CH_3COCH_3+H_2O \cap CO_2+C_2H_4+2H_2$

Effect of T on Reaction Network: TPRxn - Water Gas Shift

100 150 200 250 300 350 400 450 500 550 600 650 700 Reaction Temperature (°C) Sample: 10%Co/ZrO₂

*****Pretreatment:

400°C for 3h; Reduced at 350°C for 2h under 5%H₂/He; 400°C for 1h under He to remove moisture

*****Reaction:

CO:H₂O=1:8 (molar ratio) Total flow=51ml/min. Ramp rate:10°C/min.

Experiment: Monitoring product stream with MS

I: no reaction; II: CO + $3H_2 \cap CH_4 + H_2O$; CO + $H_2O \cap CO_2 + H_2$ III: same reactions as step II; IV: CH₄ + $H_2O \cap CO + 3H_2$; CO₂ + $H_2 \cap CO + H_2O$

Effect of T on Reaction Network: TPRxn - Reverse Water Gas Shift

Sample: 10%Co/ZrO₂

*****Pretreatment:

400°C for 3h; Reduced at 350°C for 2h under 5% H_2/He ; 400°C for 1h under He to remove moisture

*****Reaction:

CO₂:H₂=1:1 (molar ratio) Total flow=60ml/min. Ramp rate: 10°C/min.

*****Experiment:

Monitoring product700 stream with MS

I: no reaction; II: $CO_2 + 4H_2 \cap CH_4 + 2H_2O$; $CO_2 + H_2 \cap CO + H_2O$ III: $CH_4 + 2H_2O \cap CO_2 + 4H_2$ IV: $CH_4 + H_2O \cap CO + 3H_2$; $CO_2 + H_2 \cap CO + H_2O$

Effect of T on Reaction Network: TPRxn-Methane Steam Reforming

Sample: 10%Co/ZrO₂

*****Pretreatment:

400°C for 3h; Reduced at 350°C for 2h under 5% H_2/He ; 400°C for 1h under He to remove moisture

*****Reaction:

CH₄:H₂O=1:8 (molar ratio) Total flow=51ml/min. Ramping rate:10°C/min.

***Experiment:**

Monitoring product stream with MS

100 150 200 250 300 350 400 450 500 550 600 650 700 stream with Reaction Temperature (°C)

I: No Reaction II: $CH_4 + 2H_2O$ O $CO_2 + 4H_2$; $CH_4 + H_2O$ O $3H_2 + CO$; $2CH_4 + CO_2$ O $CH_3COCH_3 + H_2O$ III: $CO_2 + 2H_2$ O $CH_4 + 2H_2O$ IV: CH_4 O $C + 2H_2$; $CH_3COCH_3 + H_2$ O $C_3H_6 + H_2O$

Modification of the Initial Catalyst Formulation

300 C

350 C

400 C

24

> The addition of CeO_2 facilitates the conversion of ethanol, leading to the appearance and disappearance of surface reaction intermediate at much lower reaction temperature

Investigation on alternative methods for Co-based catalyst synthesis

Motivation of research on sol-gel synthesis of Co-ZrO₂ catalysts

For IWI preparation, all active metals are dispersed on the surface, which may cause aggregation of metal particles or sintering at high temperatures--phenomena closely related to catalyst stability and selectivity,

Sol-gel technique provides a way to uniformly distribute active metal particles in the sample. Particle size is easy to control by varying synthesis parameters

So-gel CoZrO₂ catalyst preparation

Zirconium propoxide and cobalt nitrate as precursor

Mixing of zirconium propoxide and cobalt nitrate aqueous solution at 65°C and stirring for 1hr

- ♦ Oven dry at 110°C overnight
- Calcination in air before use

Temperature programmed reduction for Co-ZrO₂ sol-gel catalysts with different Co loadings

♦With sol-gel preparation, there is better interaction between cobalt and the zirconia support. When Co wt% is less than 10%, there is hardly any reduction features till 500°C.

 With increasing Co loadings, there is more cobalt on the surface and is easier to reduce

In-situ XRD during Reduction

Reduction: 5%H₂/N₂ SG-30%CoZrO₂ From 100°C to 900°C with 100°C/step

Cool to 100C Monoclinic ZrO₂ with Co

*****900C Tetragonal ZrO_2 with a small amount of Monoclinic ZrO_2 and Metallic Co

*****800C Tetragonal ZrO₂ with a small amount of Monoclinic ZrO₂ and Metallic Co

✤700C Tetragonal ZrO₂ with a small amount of Monoclinic ZrO₂ and Metallic Co

600C Cubic ZrO₂ with Co phase

♦ 500C Cubic ZrO₂, CoO and Co coexist

*****400C CoO and Co coexists together with Cubic ZrO_2

***300C** Cubic ZrO₂ with CoO

- ♦200 C Co₃O₄ phase with cubic ZrO₂
- 100C Co₃O₄ phase with cubic ZrO₂

Intensity (a.u.)

10%CoZrO₂ catalysts prepared by two different methods result in different product distributions

(3) Purge 400°C He for 1 hr (4) TPRxn with EtOH:H₂O=1:10 using Cirrus MS

It may be possible to affect the product distribution and stability by using new synthesis techniques based on organometallic chemistry.

Publications and Presentations

- Song, H. Zhang, L. Watson, R.B., Braden, D., Ozkan, U.S., "Investigation of Bioethanol Steam Reforming over Cobalt-based Catalysts" *Catalysis Today* (*in press*);
- Song, H., Zhang, L., Ozkan, U.S., "Effect of Synthesis Parameters on the Catalytic Activity of Co/ZrO₂ for Bio-ethanol Steam Reforming" *Journal of Green Chemistry* (*in press*);
- Song, H. and Ozkan, U.S., "Fuel Cell Grade Hydrogen Production from the Bio-Ethanol Steam Reforming over Co-based Catalysts: An Investigation of Reaction Networks and Active Sites" *Ohio Fuel Cell Symposium*, Canton, Ohio, May 2006;
- Song H., Zhang, L., Ozkan, U.S., "Investigation of bio-ethanol system reforming over cobalt-based catalysts", 232nd ACS National meeting & exposition, San Francisco, CA, September 2006;
- Song H., Zhang, L., Ozkan, U.S., "Investigation of bio-ethanol steam reforming over cobalt-based catalysts", U.S. Department of Energy Bio-derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting, Baltimore, MD, October 2006;
- Song, H. Zhang, L., and Ozkan, U.S., "Catalytic Hydrogen Production from Renewable Sources" OSU-Honda Research Forum, Columbus, Ohio, February 2007;
- Song, H., Zhang, L., Ozkan, U.S., "Investigation of Reaction Networks and Active Sites in Steam Reforming of Bio-ethanol over Cobalt based Catalysts" 233rd ACS National Meeting, Chicago, IL, March 2007.

Future Work

Kinetic and mechanistic investigations coupled with in-situ characterization

Performing economic analysis based on updated catalyst system knowledge database

Performance optimization

Investigation of catalyst deactivation and regeneration characteristics

Catalyst scale-up through industrial partnerships

Project Summary

- Target: development of a catalytic system that does not rely on precious metals and that can be active and selective in the 350°C-550°C temperature range.
- Relevance: help to develop small-scale distributed hydrogen production technologies from renewable liquid energy sources.
- Approach: develop a systematic optimization strategy for evaluating the catalytic performance of different catalyst systems.
- Accomplishments:
 - Understanding the competing reaction networks
 - Identifying active sites during reaction
 - Optimizing catalyst system based on modification to the IWI sample and SG prepared catalyst
- Future Work: Mechanistic investigations coupled with in-situ characterization; economic analysis; deactivation/regeneration studies.

Umit S. Ozkan 614-292-6623 Ozkan.1@osu.edu

