

Integrated Short Contact Time Hydrogen Generator (SCPO)

2007 DOE H2 Program Annual Review Meeting

<u>Ke Liu</u>, Rick Watson, Gregg Deluga, Court Moorefield Wei Wei, Joel Haynes, Zhe Cui & Greg Gillette GE Global Research Center

Theodore Krause Argonne National Lab Lanny Schmidt & Anders Larsen Univ. of Minnesota

This presentation does not contain any proprietary or confidential information

Project ID # PDP9

Overview

Timeline

Project start date: 05/30/2005 Project end date: 05/30/2008 Percent complete: 38%

Budget

Total project funding

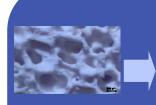
- > DOE share: \$2.6M
- > Contractor share: \$1.4M Funding received in FY05: \$490K Funding received in FY06: \$400K Funding received in FY07: \$890K

Barriers

- Technical Barriers Addressed:
 - A. Cost of Fuel Processor
 - C. Operation and Maintenance (O&M)
 - D. Feedstock Issues
 - E. Catalyst sulfur tolerance & durability
- Technical Targets (2010):
 - Total Energy Efficiency (%LHV) > 75%
 - Total H_2 Cost < \$3.00/gge H2

Partners

Argonne National Lab


• University of Minnesota

SCPO Program Highlights & Accomplishments in 2006

Project Overview

Laboratory Large Scale

e

Demo

<u>Technical Approach</u> •Develop S-tolerate Short Contact Time CPO & SMR Catalysts •Design Compact Reformer System (SCPO)

•Demonstrate Critical Components

Designed, built, shakedown high-P CPO unit
 Tested CPO catalysts use both NG & Diesel
 Design & build the integrated SMR&WGS reactor

≻System analysis and design

>Economic analysis

Develop new bio-liquids reforming program

Coordinate R&D activities GE, ANL & UoM, and report to DOE the progress quarterly.

imagination at work

Ke Liu et al. GE Global Research, EPT-FCL, Irvine, CA

<u>Project</u>

Objective

To Develop a Compact Hydrogen Generator that can Deliver H₂ at a Cost of <\$3.0/kg

S-tolerate CPO catalyst discovery
S-tolerate CPO catalyst development
CPO catalyst characterization: XRD, XPS

 SMR catalyst discovery
 Vendor CPO & SMR catalyst screening
 CPO & SMR catalyst durability

- CPO & SMR catalyst durability test w/wo sulfur dope
- SMR & CPO catalyst characterization

SCPO Tasks, Schedule & Budget

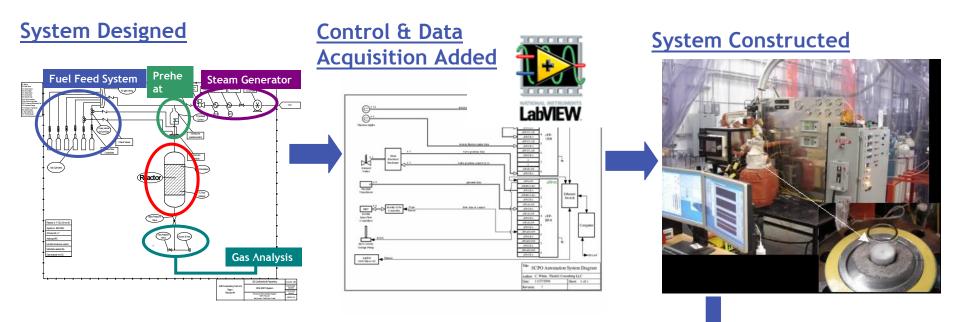
			Q1/07								Q2/07									Q3/07								Τ	Q4/07						
2007 Tasks & Schedule for SCPO & Warm Gas Clean-up		Ja		Jan		Feb I		Mar		Apr		May		'	Jun			Jul		Aug			Sep			Oct			Nov			Dec			
		1	2 3	4	5 6	7	8 9	10	11 12	13 14	15	1 6 1	17 18	19 ;	20 21	22	23 2	4 25	26 2	7 28	29 :	30 31	32 :	33 34	35	36 37	38	39 40	41 4	42 43	44 4	15 46	47 4	8 49	50 51
Tasks	Subtasks	Π	Τ	Π				Π	П						Τ	Π	Τ					Γ						П		Π		Π			
+ Sulfur Tolerate CPO	 Pre-mix + CPO Catalyst tests at GE Niska; 2). Low P tests at UoM; High P tests at GE Irvine; 4). Durability tests & APS analysis at 																																		
	1). Low P tests at ANL; 2). High P tests at GE; 3). Durability Tests at ANL																																		
	1). Design, build C-WGS unit; 2). Test C-WGS; 3). Evaluate the benefit of C- WGS for SCPO & IGCC																																		
	1). Multi-pollutants detection; 2). Adsorption kinetics; 3). Regeneration kinetics																																		
	 Aspen system model based on new test results; 2). Economic model (H2A) based on new test results and updated system design. 																																		
0	1). Coordinate the R&D activities of GE-ANL-UoM. Manage the overall SCPO project.																																		

2007 Budget:

Materials (k\$):	360
Labor (k\$):	1030
Total Funding (k\$):	1390

Note: The material budget includes \$80K to UoMn

YTD Labor:	\$322K
YTD Material:	\$87K
YTD Total:	\$409K
TTD Labor:	\$1,304K
TTD Material:	\$630K
TTD Total:	\$1,935K



imagination at work

Ke Liu et al. GE Global Research, EPT-FCL, Irvine, CA

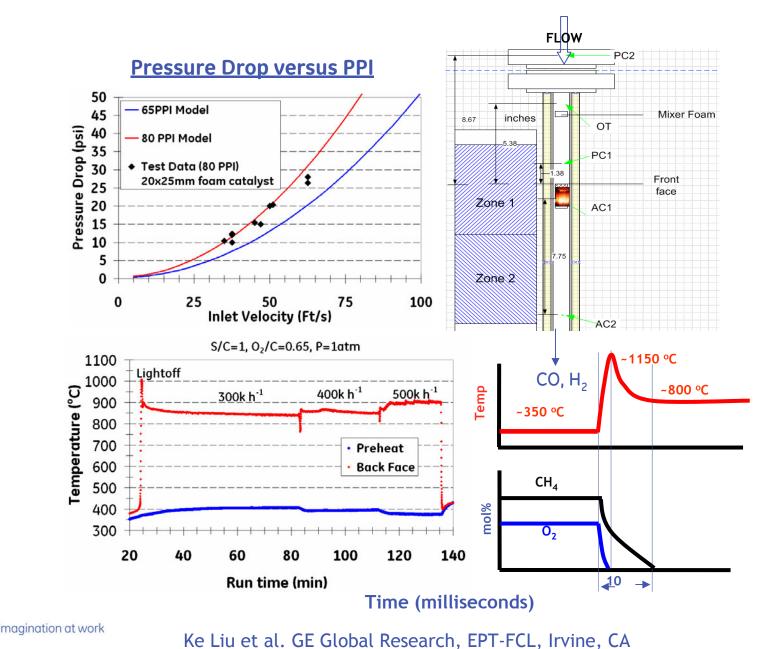
4

Task 1: Premix CPO with Sulfur Tolerate CPO Catalyst

Test in 2007

Status

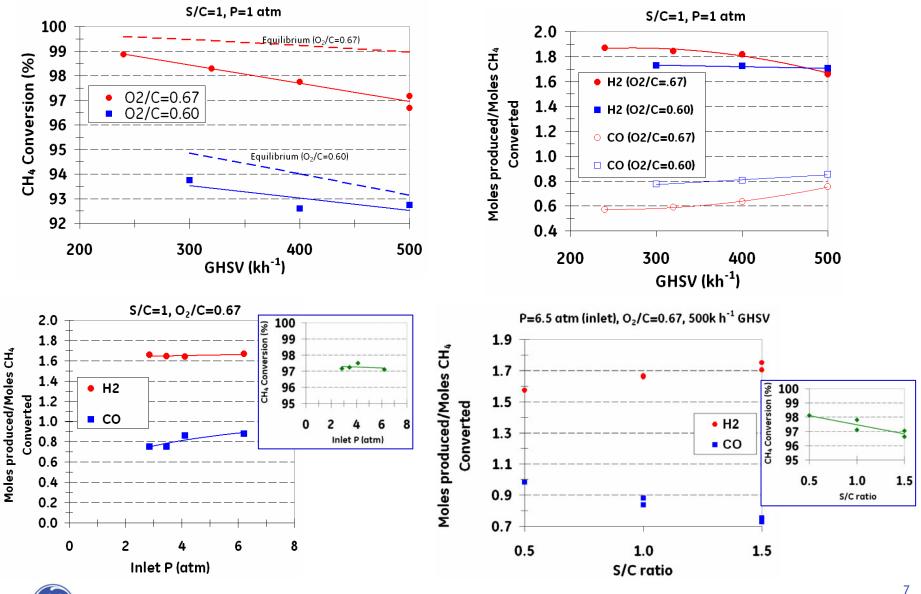
• Completed the shake-down and started the high-P CPO tests


• Two catalysts tested at diff conditions, high quality data obtained.

Plans:

- •Heavy usage in Q1 of 2007
- •Integration with Mixer
- •Integration with SMR & WGS

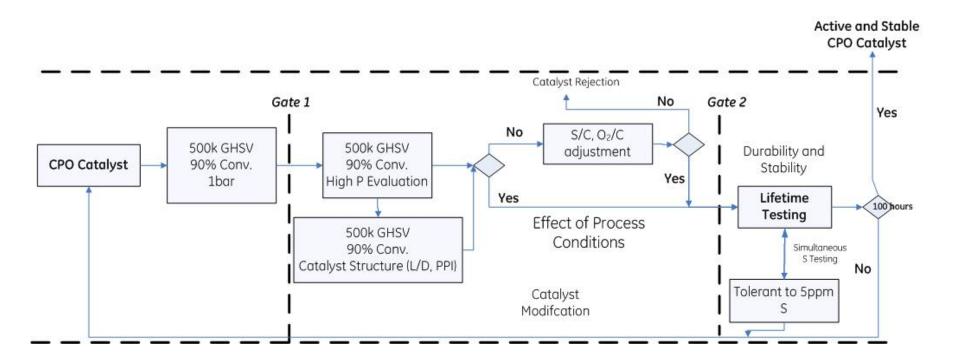
Ke Liu et al. GE Global Research, EPT-FCL, Irvine, CA


High-P CPO Data Obtained in FCL

PDP9_Liu

6

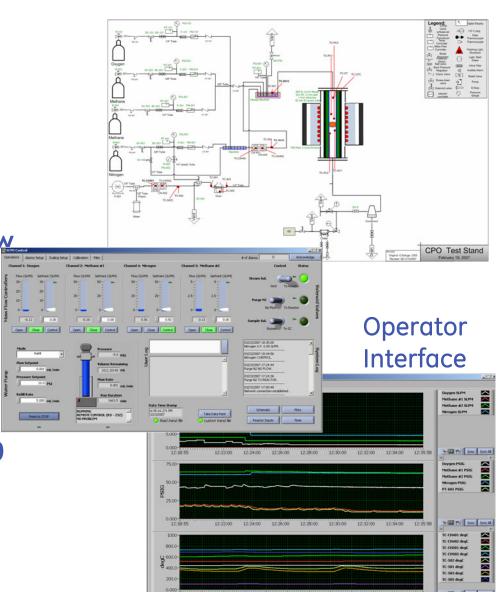
Results: Catalyst Testing-Baseline Performance

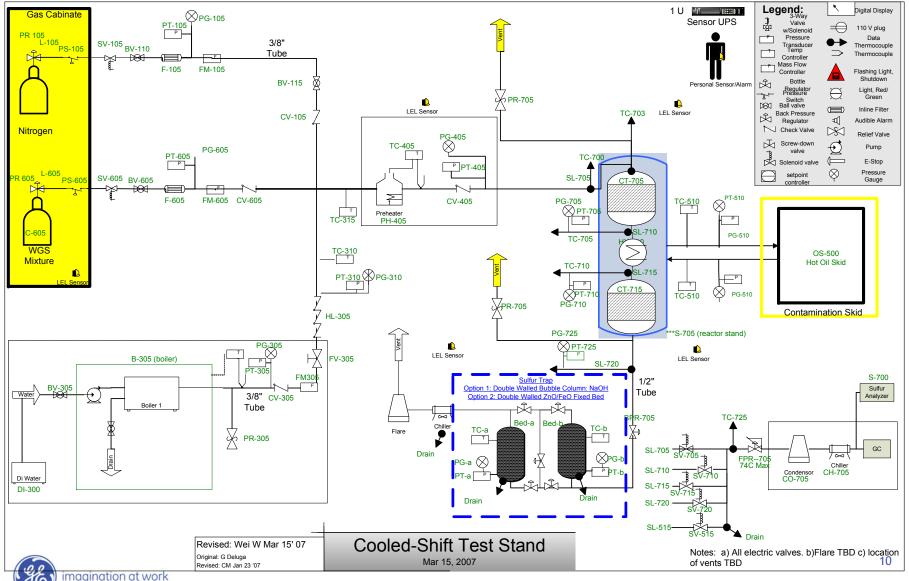

imagination at work

Ke Liu et al. GE Global Research, EPT-FCL, Irvine, CA

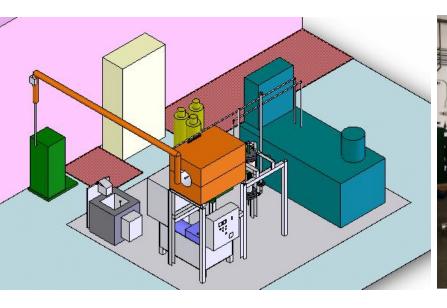
Future Work: Ongoing Catalyst Testing

Have Begun Catalyst Testing


- Atmospheric and high pressure screening
- Evaluating process conditions
 - GHSV, Temp., Pressure Drop, S/C, and O₂/C


Future Work: Ongoing Catalyst Testing

- System construction completed and commissioned
- HAZOP and FMEA Safety Review and System modifications
- System Calibration and Shakedown with Catalyst
- Currently testing optimized catalysts
- Up to 1,000,000 GHSV and 400 psig

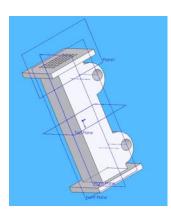


Task 2 & 3 SMR & Shift Experiments

PDP9_Liu

Task 2 &3: SCPO SMR/WGS Test Rig and Control System

- 60Kg/ day Test Rig installation in progress
- Hood & Safety System installed (gas detection, E-stops)
- Burner installation and plumbing 90% complete
- Control system design complete: Labview coding in process
- Shakedown May 31. Full test status July 1.
- Footprint of the 1500 kg/day SCPO unit including PSA: 15ft x 10ft (Preliminary estimates, size depends on the compactness of packaging)



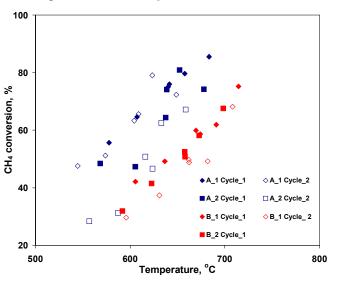
• Labview: Schematic/Blueprint of all controls complete

•Programming in progress: Includes flow control, data monitoring and acquisition, and alarm warnings.

Ke Liu et al. GE Global Research, EPT-FCL, Irvine, CA

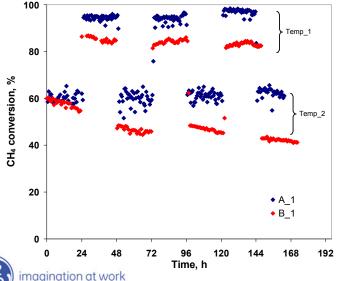
11

ANL - FY07 Workscope and Status

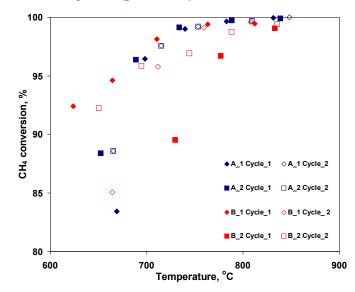

Steam reforming catalyst evaluation and development

- > Precious metal catalysts (3 catalysts from vendor A; 2 catalysts from vendor B; and 3 catalysts from Argonne)
 - Activity (Status: completed)
 - Low temperature SMR conditions
 - High temperature SMR conditions
 - Durability (Status: completed)
 - Low temperature SMR conditions
 - Sulfur-tolerance (Status: completed)
 - Low temperature SMR conditions at 5 and 20 ppm H₂S
- > Base metal catalysts (4 catalysts from two commercial vendors)
 - Activity (Status: in progress)
 - Durability (Status: in progress)
- Water-gas shift catalyst evaluation
 - > Precious and base metals (1 PM and 1 base metal catalyst, two different vendors)
 - Activity (Status: in progress)
 - Durability (Status: in progress)

FY07 funding: \$125K



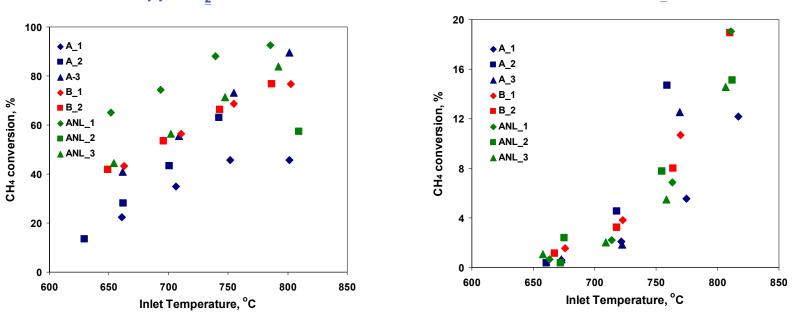
SMR Catalysts Were Evaluated for Activity and Durability



Activity - Low Temp SMR Conditions

Durability – Low Temp SMR Conditions

Activity - High Temp SMR Conditions


•Activity was evaluated by cycling catalyst between low and high T SMR conditions over a period of 48 hours.

•Durability was evaluated for low T SMR conditions by cycling between temperatures.

•Identified the catalyst that exhibits the best combination of activity and durability.

Ke Liu et al. GE Global Research, EPT-FCL, Irvine, CA

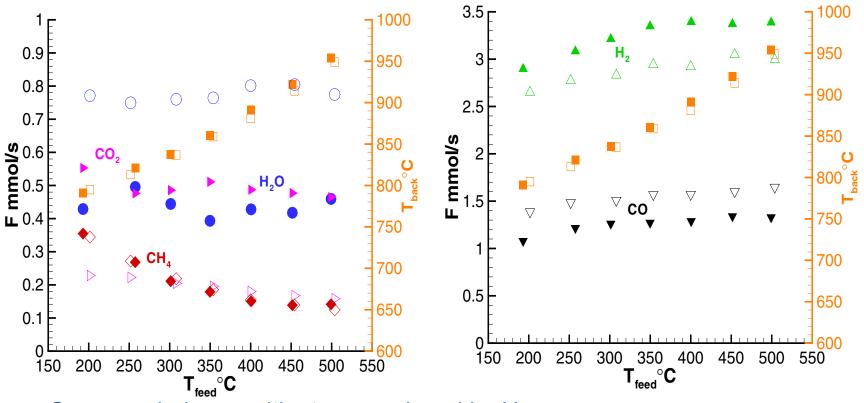
All Precious Metal SMR Catalysts Have Poor Sulfur Tolerance <u>0 ppm H_2S</u> <u>5 ppm H_2S</u>

- Sulfur poisoning was generally reversible, even at 20 ppm H_2S . Most of the activity could be recovered over 1-2 h by raising the temperature or lowering H_2S concentration.
- No evidence of carbon buildup on catalysts.
- Increasing the metal loading led to high rates in the absence of H2S but had no effect on improving the sulfur tolerance (Argonne catalysts).

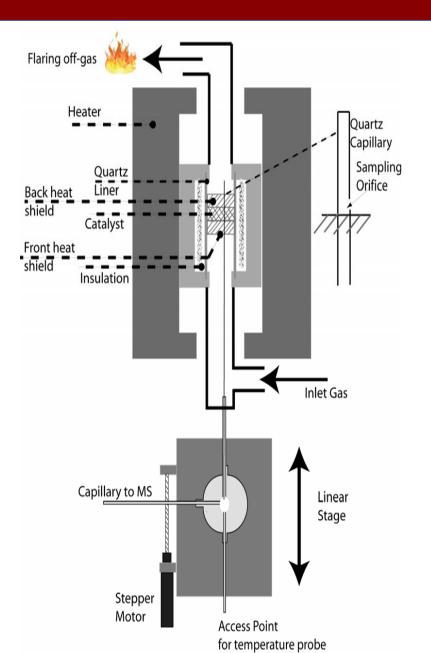
UoMn Accomplishments

 Completed screening of catalyst systems.10 systems were investigated and Rh-Ce was shown to have the best performance

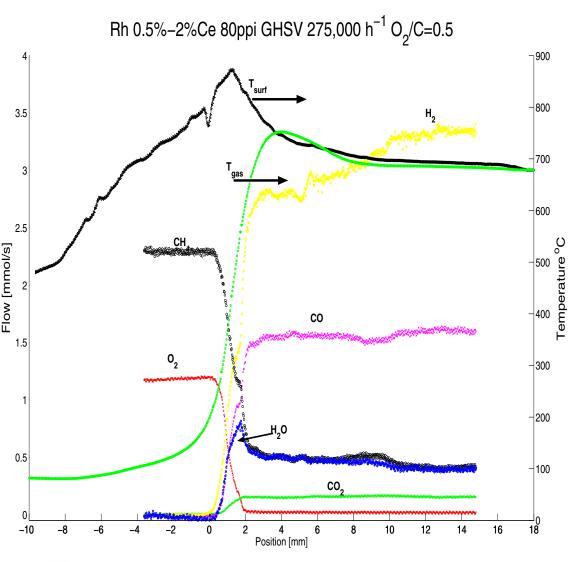
•Investigated the effect of steam addition in the system at high space velocities


• Characterized the catalyst using surface analysis (XRD, XPS). This showed that the catalyst is reduced under reaction conditions to oxidation state 0.

• Developed an experimental technique that allows to sample inside the reactor while running experiments


Effect of Steam Addition

- Open symbols are with steam replaced by N₂.
- The water flow is F_{H20}^{in} - F_{H20}^{out}
- No effect from SR but WGS does play a role
- O₂/C=0.68, S/C=1, GHSV 750,000h⁻¹


Spatial Profiles Inside the Foam Catalyst

•Developed a system that allows to *in situ* sampling in a system with very high temperature and species gradients

- \bullet Unprecedented spatial resolution (~300 μm) on the order of the characteristic length of the support
- Sampling method introduces minimal disturbance in flow. Sample rate 10ml/min, total flow 5000ml/min
- Analysis is done by mass spectroscopy which is continuously calibrated by gas chromatography

Results From Spatial Profiles

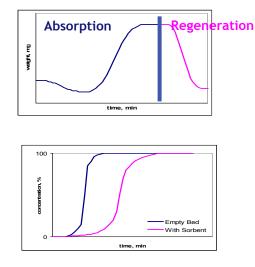
- Omm is the front face of the catalysts
- 2 zones can be identified:
- First a short ~2mm oxidation zone, where all O₂ is consumed.
 Second a longer endothermic steam reforming zone

• Very high temperature gradients in the front of the catalyst

Sulfur Adsorption Tests via TGA

Absorption Tests / Optimization

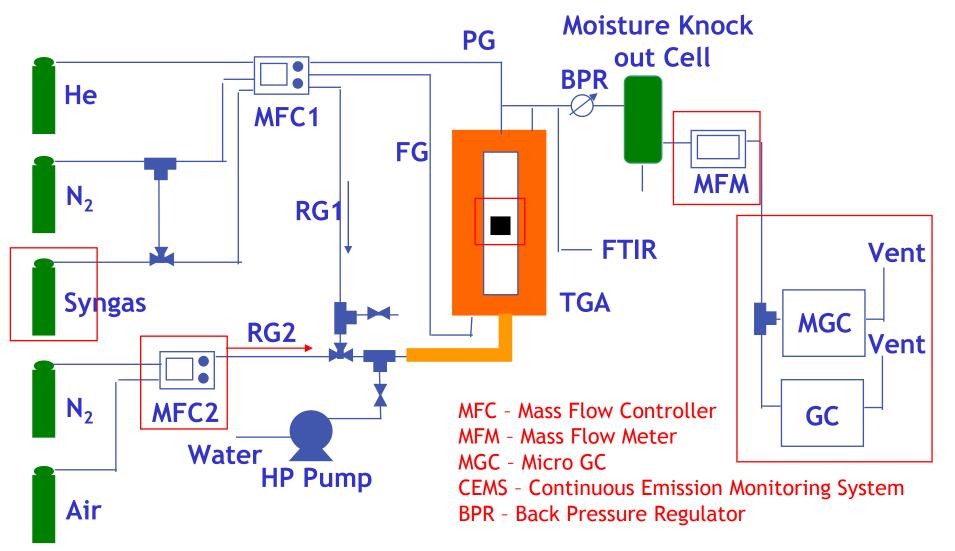
 Temperature (P is determined by gasification condition)
 H₂S Level
 Particle Size (2 levels: study effect of Pore-diffusion)
 Absorption Kinetics


 Regeneration Tests / Optimization

 Temperature
 O₂ Concentration (Air/N₂ ratio)
 Optimized Regeneration Conditions
 Fixed Bed or Fluidized Bed Reactor is Suggested

-Optimized Absorption Conditions

$$r = \frac{dx}{dt} = f(x, p_{H2S}, T) = K p_{H2S}^{m} (1 - x)^{n}$$



$$K = k \cdot \exp\left(-\frac{E}{RT}\right)$$

- Break-through point for the sorbent
- Absorption/regeneration kinetics
- Optimized operating condition
- Solid residence time in reactor (absorber/regenerator)
- Fluidized bed
 reactor/regenerator design

P&ID - TGA System

Summary & Highlights

- High-P CPO data obtained from our high-P CPO unit. Conducting tests daily now. Preparing more CPO catalysts.
- Prepared the catalyst & shipped to Niskayuna; Completed the pre-mixer design, the mixer is being fabricated. Modified the test rig. Pre-mixer CPO tests is being conducted
- SMR & Cooled shift test rig are being built, and the hood is installed, and major equipments are in place.
- Completed the shift kinetics modeling based on literature kinetics found recently. Completed the preliminary economics analysis.
- Completed the IP & literature analysis on WGS catalysts.
- ANL & UoMn continuity generate good test data for GE
- System analysis/design completed; System pressure trade off analysis completed
- Base case catalysts identified, Reactor sizing / design completed.
- HEX technology tradeoff completed, HEX technology selected, design completed
- Control strategy, start-up & shut-down procedure developed
- Completed cost analysis using GE's process model & DOE's H2A model

Conclusions & Recommendations

□ SCPO will be a leading technology for H_2 production from NG. It is a cost-effective distributed H_2 production technology based on the economic analysis of different H_2 production technologies. With minor catalyst and process condition modification, we can extend the feed to gasoline, diesel, ethanol & methanol.

□ The technologies developed in this program has good synergies with application in fuel blending, NGCC with CO2 capture, SOFC & syngas production for GTL....

Design and built high-P CPO unit and tests are being conducted. Designed and building the SMR & WGS reactors test rig, and conduct testing in 2nd half of 2007.

