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Hydrogen Storage:  The “Grand Challenge”

More targets and explanations at  www.eere.energy.gov/hydrogenandfuelcells/

Examples of Targets 2010 2015
System Gravimetric 
Capacity (net)

6 wt.% 
(2.0 kWh/kg)

9 wt.%
(3.0 kWh/kg)

System Volumetric 
Capacity (net)

1.5 kWh/L
(45 g/L)

2.7 kWh/L
(81 g/L)

Storage System Cost $4/kWh
(~$133/kg H2)

$2/kWh
($67/kg H2)

Min. Full Flow Rate 0.02 g/s/kW 0.02 g/s/kW

Refueling Time (for 5 kg) 3 min 2.5 min

Cycle Life (Durability) 1000 cycles 1500 cycles

Goal:  On-board hydrogen storage for > 300 mile driving 
range and meet all performance (wt, vol, kinetics, etc.) , 
safety and cost requirements.

These
Are

System
Targets

Material
capacities
must be
higher!

http://www.eere.energy.gov/hydrogenandfuelcells/


Note: Estimates from developers. To be periodically updated.
Costs exclude regeneration/processing. Complex hydride system data projected. Data points include analysis results.

Hydrogen Storage:  Status vs. Targets
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Current Status vs. Targets
No technology meets targets- results include data from vehicle validation

~ 103-190 miles
Independent validation 

(DOE Tech Val Program)

Estimates from developers & analysis results; periodically updated by DOE. “Learning Demo” data is for 63 vehicles.



“…DOE should continue to elicit new concepts and ideas, because 
success in overcoming the major stumbling block of on-board storage is 
critical for the future of transportation use of fuel cells.”1

• Balanced portfolio
• ~ 40 universities, 15 

companies, 10 federal labs
• Aims to address NAS & 

other peer review 
recommendations

• Annual solicitation for 
increased flexibility

• Close coordination with 
basic science

• Coordination with 
industry, other agencies & 
globally

Strategy: Diverse Portfolio with Materials Focus

1. NRC H2 Economy Report (2004) p.44 



Applied R&D Hydrogen Storage Budget
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• Emphasis: Ramp up materials 
R&D through CoE & independent 
projects

• Tailor materials to focus on T, P, 
kinetics (as well as capacity)

• New Center of Excellence planned-
Engineering Sciences*

FY2008 Budget Request = $43.9M
FY2007 Appropriation     = $34.6M
(FY2006 Appropriation     = $26.0M)

*subject to appropriations

Close coordination with Basic Science
$36.4M (FY07)
$59.5M (FY08)

Includes basic science for hydrogen 
storage, production and use (e.g., 

catalysis, membranes, etc.)



Metal Hydrides Chemical H2 Storage Adsorbents/Carbon
Alane

~8-10 wt%,~150 g/L (<150 C)
Borohydrides

>9 wt%,~100 g/L
(~250 - 350 C)

Destabilized Binary hydrides
~5-7wt%,~60-90 g/L

(~250 C)
Li Mg Amides

~5.5wt%,~80 g/L (>200 C)

4,7 Phenanthroline (organic 
liquids)

~7 wt%, ~65 g/L(<225 C)
Seeded Ammonia Borane

~9 wt%,~90 g/L(>120 C)
Ammonia Borane/Li amide

~7 wt%, ~54 g/L(~85 C)

Metal-Organic Frameworks 
IRMOF-177 

~7 wt%,~30 g/L(77K)
Bridged catalysts/IRMOF-8

~1.8 wt.%,~10 g/L
(room temperature)

Metal/carbon hybrids, 
MetCars (*theory)
~6-8wt%*,~39 g/L*

Alane (AlH3) regeneration
Chemical, electrochemical, 

supercritical fluids

LiBH4/C aerogels
6-8 wt.%, ~55-75 g/L (~300 C)

Reversible Ca(BH4)2
~9.6 wt.%, ~105 g/L (~350 C)

Mn(BH4)2
9-13 wt.% (>100 C)

Mg(BH4)2
9-12 wt.%, ~110 g/L (~350 C)

Destabilized hydrides
DFT identified new reactions

LiBH4/MgH2, CaH2/LiBH4, 
LiNH2/LiH/Si

1,6-Naphthyridine
~7 wt.%, ~70 g/L (275 C)

Surface supported catalyst

Amine boranes
Ionic liquids

~7 wt.%, 39 g/L (85 C)
AB/LiNH2, AB/LiH

~9 wt.%, ~70 g/L (85 C)
Solid AB

>16 wt.%, >199 g/L (155 C)
(>3g/s/kgAB)

Liquid AB/catalyst
~ 6 wt.% (~ 80 C)

Regeneration
2 step process, est.>50% eff.

Bridged cat./IRMOF-8
>3 wt.%, 100 bar (25 C)

~20 kJ/mol
Bridged cat./AX-21

>1 wt.%, 100 bar (25 C)

C aerogels
~5 wt.%, ~30 g/L (77 K)
Metal-doped C aerogels

~2 wt.% (77 K)
~7-7.5 kJ/mol

PANI
2.8 wt.%, 25 bar (25 C)
Release at ~100-220 C

Selected Examples of Progress:  High capacity materials 
also focused on improving thermodynamics, kinetics, regeneration

2006

2007



Progress:  Material Capacity vs. Temperature 

G. Thomas, et al., DOE (April 2007)



390 °C 
100 bar H2

700 bar H2

400 °C 
CaB6 +  2CaH2 fully rehydrided

3Ca(BH4)2 CaB6+2CaH2+10H2

Results:  Theory Guided Materials Discovery

• >160 compounds
• >300 reactions
• Energetically favored 

systems identified

Alapati, Johnson and Sholl, 
J. Phys. Chem. B 110 (2006) 8769

Theory for rapid screening

ΔH = 53 kJ/mole9.6 wt. %

Developed synthesis route (75-80% yield)
Reversibility demonstrated

Example: Experimental progress

CaB6 +  2CaH2 1%  rehydrided

Majzoub, D. Johnson, Bowman et al., MHCoE Phys Rev B 74, 155122 (2006)

E. Ronnebro, E. Majzoub et al. Sandia

Theory predicted promising properties

Theory 
guides 

experiment

Experiment 
refines 
theory



Results:  Sorbent Materials

Absolute adsorbed amount

Surface excess amount

Independent verification of 
MOF-177 (O. Yaghi et al.-
highest capacity to date 
worldwide; > 7 wt.%, 77 K)

O. Yaghi, UCLA

Independent verification of > 
2x increase in capacity due to 
spillover (R. Yang et al.)

R. Yang, U MI, P. Parilla, et al., NREL & HS Center

Metal particle

Support

Receptor

R. Yang, U. MI
R. Yang, U. MI

Spillover by Yang, U Michigan
..

Room
Temp!



Results:  AmineBoranes- Hydrogen Release
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Chemical promoters enhance H 
release in ammonia borane (AB)

9.3 mat wt% H2
(0.074 kg-H2/L)

Sneddon, et al, U. Penn and CH Center

New ionic liquids enhance H 
release; eliminate induction time

NH3BH3 BNHx + 3H2 19.4 wt.%, 160 g/L (theoretical material capacity)

Neat AB

T ~ 85 oC



Powder 
catalyst

N

N 7.2 wt. % H2, ~70 g H2/l

1,6-Naphthyridine

release temp. ~275 C
A. Cooper, et al., Air Products

50 70 90 110 130 150 170 190 210 230 250
Dehydrogenation Reactor Temperature (oC)

40 45 51ΔH (kJ/mol) = 35  

R. Ahluwalia, et al. ANL

Example of Reactor Modeling & Sensitivity Analysis

Results:  Liquid Carriers and Systems Analysis

steps 2,3,4 have been integrated

Regeneration of Ammonia BoraneOrganic liquid carriers & catalysts

Surface-supported

Liquid at room temp.



Results:  Regeneration Option Assessments

Linehan, Lipiecki, Chin, Rohm & Haas and CH CenterDifferent weighting factors can be analyzed
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Chemistry demonstrated Pref Yes Yes Yes No Yes No No Yes Yes Yes No Yes Yes Yes Yes

Cost/per unit H2 (NaBH4)
Energy consump (theor efficiency) 25 1 5 7 7 7 9 9 8 7 7 7 4 6 7 3
Raw material consump - high conv /yields 25 3 8 7 7 7 7 5 7 1 3 5 7 3 3 7
Low operating severity 5 7 8 8 8 8 8 5 3 10 10 5 5 3 5 7
Few chemical reactions 5 5 8 8 8 8 8 9 8 10 8 8 4 7 4 5
Few separation/processing steps 5 5 8 8 8 8 8 9 6 10 8 6 3 7 5 5

Capital cost, $ per unit H2 (NaBH4)
Low complexity 10 6 8 8 8 8 8 8 6 9 8 6 5 7 5 5
Low technical risk 5 10 7 7 7 7 7 5 5 7 7 5 6 7 5 7

EHS (environmental / health / safety)
Emissions, wastes, CO2 10 10 8 8 8 8 8 7 8 10 9 8 7 7 7 6
toxicity, safety, flammability, H2O-reactive 5 8 7 6 7 7 7 7 7 10 9 7 5 6 6 6
other ecological components?

Logistics (supply / distribution)
Abundant raw materials 5 10 7 10 7 8 6 10 8 10 10 10 10 10 8 10

Total Score 485 710 745 735 740 780 725 700 675 680 645 560 565 535 560

Option Criterion

Assess efficiency potential 
& other factors for viable 
chemical carriers

Develop & demonstrate 
chemistry & processes to 
improve regeneration 
efficiency

Example of systematic approach to down-selects



13 14 15 16 17 18 19 20

Processing Cost

CF Composite
Cost ($/lbs)

Storage Media
Cost ($/lbs)

Safety Factor

Fill Port Cost ($)

Insulation Cost

CF Translation
Strength (%)

$/kWh

Results: Systems, Safety, Testing & Analyses 

Processing  

BOP

Water Recovery
Sub-system
Catalytic Reactor

Dehydriding Sub-
system
Tank

Media / H2 

Examples of Storage System Cost Analyses

Lasher, et al. TIAX LLC

SwRI- Independent 
testing underway

New: Storage Materials 
& Systems Safety (U.S., 
Japan, Germany, Canada)

2nd Gen Prototype Built (Ti-NaAlH4) Cryo-Compressed Tank Concept 
Demonstrated w/ DOE Tech Val.

Estimated 2.0 wt% 
& 21 g/L 

(Projected 2.3 
wt.% and 24 g/L)

wt.

Mosher, et al, UTRC

4.7 wt. %

30 g/L 
(ANL estimate)

Normalize
d for 5.6 

kg Usable1

LH2

Cost Estimates Only (no 
detailed bottom-up assessment)

~5.6 kg 
H2

Capacity/ 
Usable

$2
$4
$6
$8
$10
$12
$14
$16
$18
$20

Cryo-
Compressed

LH2 Carbon NaBH4 NaAlH4 5,000 
psi

10,000 
psi
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h

2010 
Target 

($4/kWh)

Sensitivity analysis shows key cost drivers

Aceves, Berry, et al, LLNL



Interagency 
Hydrogen R&D Task 
Force (OSTP)

• Reversible Solid State Hydrogen Storage 
for Fuel Cell Power supply system
(Russian Academy of Sciences)

• NESSHY – Novel Efficient Solid Storage 
for Hydrogen (National Center for Scientific 
Research “Demokritos,” EU)

• Hydrodes & Nanocomposites in 
Hydrogen Ball Mills (University of Waterloo, 
Canada)

• Combination of Amine Boranes with 
MgH2 & LiNH2 (Los Alamos & Pacific Northwest 
National Labs, USA)

• Fundamental Safety Testing & Analysis
(Savannah River National Lab, USA)

IEA – HIA TASK 22

DoD:  DEFENSE 
LOGISTICS AGENCY

New Storage Awards (4/07):

• High throughput -
Combinatorial Screening:
U of Central Florida, UC Berkeley 
& Symyx, Miami U (Ohio) & NREL

• Reversible System Dev’t & 
Demonstration: Energy 
Conversion Devices, U of Missouri 
(phase 1 design)

A total of 43 projects have been 
proposed for Task 22. This includes 
participation by 15 countries, 43 
organizations, and 46 official experts.

Project Types:
• Experimental
• Engineering
• Theoretical Modeling (scientific or 

engineering)
• Safety Aspects of Hydrogen 

Storage Materials

Classes of Storage Media
• Reversible Metal Hydrides
• Regenerative  Hydrogen Storage 

Materials
• Nanoporous Materials
• Rechargeable Organic Liquids and 

Solids

NSF- proposal 
review in  process 
(5/07)
NIST- neutron 
scattering

Examples of Hydrogen Storage Collaboration



Strategy & Execution
Example- maps portfolio & requirements to meet targets

Hydrogen Storage Tech Team Outcomes Map



Keep up the sustained effort and high technical quality work & be flexible!
Address volumetric capacity, T, P, kinetics, etc. (not just wt. %!)

Key Milestones & Future Plans

*Subject to appropriations and direction

2006 2007            2008          

Cryo-compressed 
Tank Assessment

New CoE
Solicitation *

Test Facility 
Validation

Mar           Jun           Sep           Dec          Mar      Jun           Sep           Dec         Mar

2nd System 
Prototype Complete

RFI on New Center of 
Excellence

Annual 
Solicitation *

Go/No Go 
NaBH4

Assess & update 
targets if required

Downselect 
Chemical H2

Storage Mat’lsDownselect 
Reversible Metal 

Hydrides

RD&D Plan Updates 
onlineFull Proposals 

Due

New Awards 
Announced

Assessment of Center 
Approach

Theory Focus 
Session

No-Go on pure Single 
walled Nanotubes
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Field Office Project Officer

303-275-4795
jim.alkire@ee.doe.gov 

Jesse Adams
Field Office Project Officer

303-275-4954
jesse.adams@go.doe.gov

Sunita Satyapal, Team Leader
Overall Storage/ FreedomCAR Tech 

Team/International
202-586-2336              

sunita.satyapal@ee.doe.gov

Grace Ordaz
Chemical Hydrides,Chemical Hydrogen 

Storage Center of Excellence
202-586-8350

grace.ordaz@ee.doe.gov

Carole Read
Sorbents & Carbon, Hydrogen Sorption 

Center of Excellence
202-586-3152
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Hydrogen Storage Team

Paul Bakke
Field Office Project Officer

303-275-4916
paul.bakke@go.doe.gov

George Thomas*
On Assignment to DOE

*retired, Sandia
202-586-8058

george.thomas@ee.doe.gov

www.hydrogen.energy.gov

Basic Science: Harriet Kung (harriet.kung@science.doe.gov)

Ned Stetson 
Metal Hydrides, Metal Hydride Center of 

Excellence
202-586-9995

ned.stetson@ee.doe.gov
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Metal Hydride 
Center

National Laboratory:
Sandia-Livermore

Industrial partners:
General Electric
HRL Laboratories
Intematix Corp.

Universities:
CalTech
Stanford
Pitt/CMU
Hawaii 
Illinois 
Nevada-Reno 
Utah 

Federal Lab Partners:
Brookhaven
JPL, NIST
Oak Ridge
Savannah River

Hydrogen Sorption 
Center

National Laboratory:
NREL

Industrial partners:
Air Products & 

Chemicals

Universities:
CalTech 
Duke
Penn State
Rice
Michigan 
North Carolina 
Pennsylvania 

Federal Lab Partners:
Lawrence Livermore
NIST
Oak Ridge

Chemical Hydrogen 
Storage Center

National Laboratories:
Los Alamos
Pacific Northwest

Industrial partners:
Intematix Corp.
Millennium Cell
Rohm & Haas 
US Borax 

Universities:
Northern Arizona
Penn State
Alabama 
California-Davis 
Univ. of Missouri
Pennsylvania 
Washington 

Advanced Metal Hydrides
UTRC, UOP
Savannah River Nat’l Lab
Univ. of Connecticut

Sorbent/Carbon-based Materials
UCLA
State University of New York 
Gas Technology Institute 
UPenn & Drexel Univ.
Miami Univ. of Ohio

Chemical Hydrogen Storage
Air Products & Chemicals
RTI
Millennium Cell 
Safe Hydrogen LLC
Univ. of Hawaii

Other New Materials & Concepts
Alfred University 
Michigan Technological University
UC-Berkeley/LBL 
UC-Santa Barbara
Argonne Nat’l Lab 

Tanks, Safety, Analysis & Testing
Lawrence Livermore Nat’l Lab
Quantum
Argonne Nat’l Lab, TIAX LLC
SwRI, UTRC, Sandia Nat’l Lab
Savannah River Nat’l Lab

Centers of Excellence

Applied R&D Hydrogen Storage “Grand Challenge” Partners: 
Diverse Portfolio with University, Industry and National Lab Participation

Independent Projects

Coordination with: Basic Science (Office of Science, BES)

MIT, U.WA, U. Penn., CO School of Mines, Georgia Tech, Louisiana Tech, Georgia, 
Missouri-Rolla, Tulane, Southern Illinois; Labs: Ames, BNL, LBNL, ORNL, PNNL, SRNL



Assessment of 
CoE model: 

Multi-
institutional 
critical mass 
applied R&D is 
proving to be 
effective

Results from All Centers of Excellence Respondents

4.6
4.6
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Accessibility of DOE HQ

Accessibility of DOE Golden

Accessibility of lead national lab coordinators

Value-added performance of DOE HQ

Usefulness of partner interactions

Accessibility of subject area coordinators

Communication of safety issues

Communication with partners within subject area  in the CoE

Value-added performance of lead national lab coordinators

Value of CoE meetings

Value-added performance of subject area coordinators

Communication within subject area

Value-added performance of DOE Golden

Communication across the CoE

Protection of IP between CoE partners

Protection of IP across the CoE

University:  Efficacy of applying WBS to university work

Programmatic Results:  Focus on strategy & execution

• Annual Solicitation (6 new projects complement portfolio)
• No-go (FY06) on pure SWNTs (doped C/basic science still go)
• Assessment of Cryo-compressed tanks complete
• Outcomes maps done & targets revisited through FreedomCAR



It’s not just about capacity- much research 
is focused on tailoring kinetics & thermodynamics…

• Hydride heat of formation
– pressure limits (~20-35 kJ/molH2)
– refueling (<20 kJ/molH2)

• Surface heat of adsorption
– operating temperature
– release temperature

• Activation barrier for regeneration
– energy efficiency
– near thermo-neutral

Pressure at 80 C vs. Formation Energy
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Apply theory & experimentation to design & develop novel, high-
performance materials to meet specific performance targets:

• Develop new materials, leverage knowledge from basic research
• Optimize materials and testing to improve performance
• Design, develop and demonstrate materials, components and 

prototype systems to meet milestones

Develop and use theoretical models & fundamental 
experimentation to generate knowledge:

• Fundamental property & transport phenomena
• Novel material structures, characterization
• Theory, modeling, understand reaction mechanisms

Basic Research 

Test Systems under Real World Conditions
• Demonstrate and validate performance against targets
• Gain knowledge (e.g. fueling time, driving range, 

durability, cost, etc.) and apply lessons learned to R&D

Technology Validation & Demonstration

Applied Research & Development

Synergy between Basic Science and Applied Research, 
Development and Demonstration

0.0dC
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P07



Summary

• New Materials & Concepts are critical- address volumetric 
capacity, T, P, kinetics, etc. (not just wt. %!)

• Basic science is valuable to develop fundamental 
understanding & complements applied research & 
development

• Engineering issues need to be considered
– System issues, thermal mgmt, safety, refueling, testing, etc

• Examples of Essential Capabilities:
– Modeling & Analysis
– Combinatorial/high throughput methods
– Material properties measurements
– Standardized & accurate testing
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