

ENERGY

# **Hydrogen Storage**

Sunita Satyapal, Grace Ordaz, Carole Read, Ned Stetson, Jesse Adams, Jim Alkire, Paul Bakke, and George Thomas<sup>1</sup>

## 2007 DOE Hydrogen Program Merit Review and Peer Evaluation Meeting

May 15, 2007

<sup>1</sup> Sandia- Retired, on assignment to DOE, Washington DC



## Outline

Goals and Objectives

**Targets & challenges** 

- Budget
- Progress

Results in the last year

**R&D** examples

• Future Plans



Goal: On-board hydrogen storage for > 300 mile driving range and meet all performance (wt, vol, kinetics, etc.), safety and cost requirements.

|                                                                                   | Examples of Targets                  | 2010                                   | 2015                                 |  |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--|--|--|
| These<br>Are<br>System<br>Targets<br>Material<br>capacities<br>must be<br>higher! | System Gravimetric<br>Capacity (net) | 6 wt.%<br>(2.0 kWh/kg)                 | 9 wt.%<br>(3.0 kWh/kg)               |  |  |  |
|                                                                                   | System Volumetric<br>Capacity (net)  | 1.5 kWh/L<br>(45 g/L)                  | 2.7 kWh/L<br>(81 g/L)                |  |  |  |
|                                                                                   | Storage System Cost                  | \$4/kWh<br>(~\$133/kg H <sub>2</sub> ) | \$2/kWh<br>(\$67/kg H <sub>2</sub> ) |  |  |  |
|                                                                                   | Min. Full Flow Rate                  | 0.02 g/s/kW                            | 0.02 g/s/kW                          |  |  |  |
|                                                                                   | Refueling Time (for 5 kg)            | 3 min                                  | 2.5 min                              |  |  |  |
|                                                                                   | Cycle Life (Durability)              | 1000 cycles                            | 1500 cycles                          |  |  |  |



More targets and explanations at <u>www.eere.energy.gov/hydrogenandfuelcells/</u>

## **Current Status vs. Targets**

No technology meets targets- results include data from vehicle validation



Estimates from developers & analysis results; periodically updated by DOE. "Learning Demo" data is for 63 vehicles.

## Strategy: Diverse Portfolio with Materials Focus

"...DOE should continue to elicit new concepts and ideas, because success in overcoming the major stumbling block of on-board storage is critical for the future of transportation use of fuel cells."<sup>1</sup>



1. Coordinated by DOE Energy Efficiency and Renewable Energy, Office of Hydrogen, Fuel Cells and Infrastructure Technologies

3. Coordinated with Delivery Program element

- Balanced portfolio
- ~ 40 universities, 15
   companies, 10 federal labs
- Aims to address NAS & other peer review recommendations
- Annual solicitation for increased flexibility
- Close coordination with basic science
- Coordination with industry, other agencies & globally

<sup>2.</sup> Basic science for hydrogen storage conducted through DOE Office of Science, Basic Energy Sciences



## **Applied R&D Hydrogen Storage Budget**

FY2008 Budget Request = \$43.9MFY2007 Appropriation = \$34.6M(FY2006 Appropriation = \$26.0M)



- Emphasis: Ramp up materials
   R&D through CoE & independent
   projects
- Tailor materials to focus on T, P, kinetics (as well as capacity)
- New Center of Excellence planned-Engineering Sciences\*

Close coordination with Basic Science \$36.4M (FY07) \$59.5M (FY08) Includes basic science for hydrogen storage, production and use (e.g., catalysis, membranes, etc.)

\*subject to appropriations



## **Selected Examples of Progress:** High capacity materials also focused on improving thermodynamics, kinetics, regeneration

|      | Metal Hydrides                                                                                                                                                                                               | Chemical H <sub>2</sub> Storage                                                                                                                                            | Adsorbents/Carbon                                                                                                                                                                                       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 006  | Alane<br>~8-10 wt%,~150 g/L (<150 C)<br>Borohydrides<br>>9 wt%,~100 g/L<br>(~250 - 350 C)<br>Destabilized Binary hydrides<br>~5-7wt%,~60-90 g/L<br>(~250 C)<br>Li Mg Amides<br>~5.5wt%,~80 g/L (>200 C)      | 4,7 Phenanthroline (organic<br>liquids)<br>~7 wt%, ~65 g/L(<225 C)<br>Seeded Ammonia Borane<br>~9 wt%,~90 g/L(>120 C)<br>Ammonia Borane/Li amide<br>~7 wt%, ~54 g/L(~85 C) | Metal-Organic Frameworks<br>IRMOF-177<br>~7 wt%,~30 g/L(77K)<br>Bridged catalysts/IRMOF-8<br>~1.8 wt.%,~10 g/L<br>(room temperature)<br>Metal/carbon hybrids,<br>MetCars (*theory)<br>~6-8wt%*,~39 g/L* |
|      | Alane (AIH <sub>3</sub> ) regeneration<br>Chemical, electrochemical,<br>supercritical fluids<br>LiBH <sub>4</sub> /C aerogels<br>6-8 wt.%, ~55-75 g/L (~300 C)                                               | 1,6-Naphthyridine<br>~7 wt.%, ~70 g/L (275 C)<br>Surface supported catalyst<br>Amine boranes<br>Ionic liquids                                                              | Bridged cat./IRMOF-8<br>>3 wt.%, 100 bar (25 C)<br>~20 kJ/mol<br>Bridged cat./AX-21<br>>1 wt.%, 100 bar (25 C)                                                                                          |
| 2007 | Reversible Ca(BH <sub>4</sub> ) <sub>2</sub><br>~9.6 wt.%, ~105 g/L (~350 C)<br>Mn(BH <sub>4</sub> ) <sub>2</sub><br>9-13 wt.% (>100 C)<br>Mg(BH <sub>4</sub> ) <sub>2</sub><br>9-12 wt.%, ~110 g/L (~350 C) | ~7 wt.%, 39 g/L (85 C)<br>AB/LiNH <sub>2</sub> , AB/LiH<br>~9 wt.%, ~70 g/L (85 C)<br>Solid AB<br>>16 wt.%, >199 g/L (155 C)<br>(>3g/s/kgAB)                               | C aerogels<br>~5 wt.%, ~30 g/L (77 K)<br>Metal-doped C aerogels<br>~2 wt.% (77 K)<br>~7-7.5 kJ/mol                                                                                                      |
|      | Destabilized hydrides<br>DFT identified new reactions<br>LiBH <sub>4</sub> /MgH <sub>2</sub> , CaH <sub>2</sub> /LiBH <sub>4</sub> ,<br>LiNH <sub>2</sub> /LiH/Si                                            | Liquid AB/catalyst<br>~ 6 wt.% (~ 80 C)<br>Regeneration<br>2 step process, est.>50% eff.                                                                                   | PANI<br>2.8 wt.%, 25 bar (25 C)<br>Release at ~100-220 C                                                                                                                                                |





G. Thomas, et al., DOE (April 2007)



## **Results: Theory Guided Materials Discovery**



Majzoub, D. Johnson, Bowman et al., MHCoE

Phys Rev B 74, 155122 (2006)



## **Results: Sorbent Materials**





## **Results: AmineBoranes-Hydrogen Release**

 $NH_3BH_3 \rightarrow BNH_x + 3H_2$  19.4 wt.%, 160 g/L (theoretical material capacity)



Sneddon, et al, U. Penn and CH Center

## **Results: Liquid Carriers and Systems Analysis**





## **Results: Regeneration Option Assessments**

#### **Example of systematic approach to down-selects**

| Option Criterion                                                                                                                                                                                        |                         |                       | Metal Reduction       |                  |                  |                                                              |                                             |                  |                         | Echem              |                     | Borane       |                   | ne          |            |                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|-----------------------|------------------|------------------|--------------------------------------------------------------|---------------------------------------------|------------------|-------------------------|--------------------|---------------------|--------------|-------------------|-------------|------------|-----------------------------------|
|                                                                                                                                                                                                         |                         | Schlesinger           | Mg                    | AI               | Ті               | Si                                                           | Zn                                          | Carbothermal     | Elemental               | 1-stop             | 2-step              | HT melts     | BCI3              | TMB         | M + B2O3   | Metathesis                        |
| Chemistry demonstrated                                                                                                                                                                                  | Pref                    | Yes                   | Yes                   | Yes              | No               | Yes                                                          | No                                          | No               | Yes                     | Yes                | Yes                 | No           | Yes               | Yes         | Yes        | Yes                               |
| <b>Cost/per unit H2 (NaBH4)</b><br>Energy consump (theor efficiency)<br>Raw material consump - high conv /yields<br>Low operating severity<br>Few chemical reactions<br>Few separation/processing steps | 25<br>25<br>5<br>5<br>5 | 1<br>3<br>7<br>5<br>5 | 5<br>8<br>8<br>8<br>8 | 7<br>7<br>8<br>8 | 7<br>7<br>8<br>8 | 7<br>7<br>8<br>8<br>8                                        | <ul> <li>A</li> <li>8</li> <li>C</li> </ul> | sse<br>ot<br>her | ess<br>her<br>nic       | eff<br>fac<br>al c | icie<br>ctor<br>arr | ency<br>s fo | y po<br>or v<br>S | oter<br>iab | ntia<br>le | <b>1</b><br>,<br>,<br>,<br>,<br>, |
| Capital cost, <b>\$ per unit H2 (NaBH4)</b><br>Low complexity<br>Low technical risk                                                                                                                     | 10<br>5                 | 6<br>10               | 8<br>7                | 8<br>7           | 8<br>7           | 8<br>7                                                       | ■ [<br>c                                    | )ev<br>her       | elo <sub>l</sub><br>nis | p &<br>try         | de<br>& p           | mo<br>roc    | nst<br>ess        | rate<br>ses | e<br>to    | 5                                 |
| EHS (environmental / health / safety)<br>Emissions, wastes, CO2<br>toxicity, safety, flammability, H2O-reactive<br>other ecological components?                                                         | 10<br>5                 | 10<br>8               | 8<br>7                | 8<br>6           | 8<br>7           | <sup>8</sup> improve regeneration<br><sup>7</sup> efficiency |                                             |                  |                         |                    |                     |              | )<br>)            |             |            |                                   |
| Logistics (supply / distribution)<br>Abundant raw materials                                                                                                                                             | 5                       | 10                    | 7                     | 10               | 7                | 8                                                            | 6                                           | 10               | 8                       | 10                 | 10                  | 10           | 10                | 10          | 8          | 10                                |
| Total Score                                                                                                                                                                                             |                         | 485                   | 710                   | 745              | 735              | 740                                                          | 780                                         | 725              | 700                     | 675                | 680                 | 645          | 560               | 565         | 535        | 560                               |

Different weighting factors can be analyzed

Linehan, Lipiecki, Chin, Rohm & Haas and CH Center



#### **Examples of Storage System Cost Analyses**

Sensitivity analysis shows key cost drivers



SwRI- Independent testing underway

**SRNL** 

United Technologies

New: Storage Materials & Systems Safety (U.S., Japan, Germany, Canada)

**Kidde** Fenwal

AIST



## **Examples of Hydrogen Storage Collaboration**



#### A total of 43 projects have been proposed for Task 22. This includes participation by 15 countries, 43 organizations, and 46 official experts.

#### **Project Types:**

- Experimental
- Engineering
- Theoretical Modeling (scientific or engineering)
- Safety Aspects of Hydrogen Storage Materials

#### **Classes of Storage Media**

- Reversible Metal Hydrides
- Regenerative Hydrogen Storage **Materials**
- Nanoporous Materials
- Rechargeable Organic Liquids and Solids





- Reversible Solid State Hydrogen Storage for Fuel Cell Power supply system (Russian Academy of Sciences)
- NESSHY Novel Efficient Solid Storage for Hydrogen (National Center for Scientific Research "Demokritos," EU)



- Hydrodes & Nanocomposites in Hydrogen Ball Mills (University of Waterloo, Canada)
- Combination of Amine Boranes with MgH<sub>2</sub> & LiNH<sub>2</sub> (Los Alamos & Pacific Northwest National Labs. USA)
- Fundamental Safety Testing & Analysis (Savannah River National Lab, USA)

#### DoD: DEFENSE LOGISTICS AGENCY

#### New Storage Awards (4/07):

- High throughput -**Combinatorial Screening:** U of Central Florida, UC Berkeley & Symyx, Miami U (Ohio) & NREL
- Reversible System Dev't & **Demonstration:** Energy Conversion Devices, U of Missouri (phase 1 design)

Interagency Hydrogen R&D Task Force (OSTP)

**NSF**- proposal review in process (5/07)**NIST**- neutron scattering

### **Strategy & Execution** Example- maps portfolio & requirements to meet targets

#### Hydrogen Storage Tech Team Outcomes Map



## **Key Milestones & Future Plans**



Keep up the sustained effort and high technical quality work & be flexible! Address volumetric capacity, T, P, kinetics, etc. (not just wt. %!)

\*Subject to appropriations and direction



## **For More Information**

### Hydrogen Storage Team

#### Sunita Satyapal, Team Leader

Overall Storage/ FreedomCAR Tech Team/International 202-586-2336 sunita.satyapal@ee.doe.gov

#### Grace Ordaz

Chemical Hydrides. Chemical Hydrogen Storage Center of Excellence 202-586-8350 grace.ordaz@ee.doe.gov

#### **Ned Stetson**

Metal Hydrides, Metal Hydride Center of Excellence 202-586-9995 ned.stetson@ee.doe.gov

#### Carole Read

Sorbents & Carbon, Hydrogen Sorption Center of Excellence 202-586-3152 carole.read@ee.doe.gov

#### George Thomas\*

On Assignment to DOE \*retired, Sandia 202-586-8058 george.thomas@ee.doe.gov

#### Jesse Adams

Field Office Project Officer 303-275-4954 jesse.adams@go.doe.gov

#### James Alkire

Field Office Project Officer 303-275-4795 jim.alkire@ee.doe.gov

#### Paul Bakke

Field Office Project Officer 303-275-4916 paul.bakke@go.doe.gov

Basic Science: Harriet Kung (harriet kung@science.doe.gov)

www.hydrogen.energy.gov



**Acknowledgements** 

## DOE Researchers Global Hydrogen Storage R&D Community FreedomCAR & Fuel Partnership Technical Team Reviewers

## In Memoriam Professor Alan MacDiarmid\* 1927-2007

\*2000 Nobel Prize in Chemistry (conducting polymers)



# Thank you



## **Additional Information**



**Applied R&D Hydrogen Storage "Grand Challenge" Partners: Diverse Portfolio with University, Industry and National Lab Participation** 

#### Centers of Excellence

**Metal Hydride** Center **National Laboratory:** Sandia-Livermore

Industrial partners: **General Electric HRL** Laboratories Internatix Corp.

Universities:

CalTech Stanford Pitt/CMU Hawaii Illinois Nevada-Reno Utah

Federal Lab Partners:

Brookhaven JPL, NIST Oak Ridge Savannah River

**Hydrogen Sorption** Center **National Laboratory:** NRFI

Industrial partners: Air Products & Chemicals

**Universities:** CalTech Duke Penn State Rice Michigan North Carolina Pennsylvania

Federal Lab Partners: Lawrence Livermore NIST Oak Ridge

**Chemical Hydrogen Storage Center** National Laboratories: Los Alamos Pacific Northwest

Industrial partners: Internatix Corp. Millennium Cell Rohm & Haas US Borax

Universities: Northern Arizona Penn State Alabama Pennsylvania

California-Davis Univ. of Missouri

Washington

Independent Projects

**Advanced Metal Hydrides** UTRC. UOP Savannah River Nat'l Lab Univ. of Connecticut Sorbent/Carbon-based Materials UCLA State University of New York Gas Technology Institute UPenn & Drexel Univ Miami Univ. of Ohio **Chemical Hydrogen Storage** Air Products & Chemicals RTI Millennium Cell Safe Hydrogen LLC Univ. of Hawaii **Other New Materials & Concepts** Alfred University Michigan Technological University UC-Berkeley/LBL UC-Santa Barbara Argonne Nat'l Lab Tanks, Safety, Analysis & Testing Lawrence Livermore Nat'l Lab Quantum Argonne Nat'l Lab, TIAX LLC SwRI, UTRC, Sandia Nat'l Lab Savannah River Nat'l Lab

**Coordination with: Basic Science (Office of Science, BES)** 

MIT, U.WA, U. Penn., CO School of Mines, Georgia Tech, Louisiana Tech, Georgia, Missouri-Rolla, Tulane, Southern Illinois; Labs: Ames, BNL, LBNL, ORNL, PNNL, SRNL



## **Programmatic Results: Focus on strategy & execution**

| ATESO          | Results from All Centers of Excellence Respondents         |      |    |     |     |          |             |             |              |     |
|----------------|------------------------------------------------------------|------|----|-----|-----|----------|-------------|-------------|--------------|-----|
| 1.00           | University: Efficacy of applying WBS to university work    |      |    |     |     | <b>.</b> | <b></b> 3.2 |             |              |     |
| Assessment of  | Protection of IP across the CoE                            |      |    |     |     |          |             | <b></b> 3.7 |              |     |
| Assessment of  | Protection of IP between CoE partners                      |      |    |     |     |          | 1           | <b></b> 3   | .9           |     |
| CoE model:     | Communication across the CoE                               |      |    |     |     |          |             | <b></b>     | 4.1          |     |
|                | Value-added performance of DOE Golden                      |      |    |     |     |          |             |             | <b></b> 4.3  |     |
|                | Communication within subject area                          |      |    |     |     |          |             | 1           | <b>4.3</b>   |     |
| Multi_         | Value-added performance of subject area coordinators       |      |    |     |     |          |             | 1           | <b>—</b> 4.4 |     |
|                | Value of CoE meetings                                      |      |    |     |     |          |             |             | <b>—</b> 4.4 |     |
| institutional  | Value-added performance of lead national lab coordinators  |      |    |     |     |          |             |             | <b>—</b> 4.4 |     |
| critical mass  | Communication with partners within subject area in the CoE |      |    |     |     |          |             |             | <b>⊨</b> 4.4 | 4   |
| enalied DPD is | Communication of safety issues                             |      |    |     |     |          |             |             | <b>⊨</b> 4.4 | L I |
| applied R&D is | Accessibility of subject area coordinators                 |      |    |     |     |          |             |             | <b>—</b> 4.  | 5   |
| proving to be  | Usefulness of partner interactions                         |      |    |     |     |          |             |             | _ <b></b> ,  | 4.5 |
| offective      | Value-added performance of DOE HQ                          |      |    |     |     |          |             |             | <u> </u>     | 4.6 |
| CHECUVE        | Accessibility of lead national lab coordinators            |      |    |     |     |          |             |             | <u> </u>     | 4.6 |
|                | Accessibility of DOE Golden                                |      |    |     |     |          |             |             |              | 4.6 |
|                | Accessibility of DOE HQ                                    |      |    |     |     |          |             |             |              | 4.7 |
| 1              | 1.                                                         | .0 1 | .5 | 2.0 | 2.5 | 3.0      | 3.5         | 4.0         | 4.5          | 5.0 |

- Annual Solicitation (6 new projects complement portfolio)
- No-go (FY06) on pure SWNTs (doped C/basic science still go)
- Assessment of Cryo-compressed tanks complete
- Outcomes maps done & targets revisited through FreedomCAR



# It's not just about capacity- much research is focused on tailoring kinetics & thermodynamics...



- pressure limits (~20-35 kJ/molH<sub>2</sub>)
- refueling (<20 kJ/molH<sub>2</sub>)



- Surface heat of adsorption
  - operating temperature
  - release temperature





- Activation barrier for regeneration
  - energy efficiency
  - near thermo-neutral





## Synergy between Basic Science and Applied Research, Development and Demonstration

#### **Basic Research**

- Develop and use theoretical models & fundamental experimentation to generate knowledge:
- Fundamental property & transport phenomena
- Novel material structures, characterization
- Theory, modeling, understand reaction mechanisms







#### **Applied Research & Development**

- Apply theory & experimentation to design & develop novel, highperformance materials to meet specific performance targets:
- Develop new materials, leverage knowledge from basic research
- Optimize materials and testing to improve performance
- Design, develop and demonstrate materials, components and prototype systems to meet milestones







#### **Technology Validation & Demonstration**

- Test Systems under Real World Conditions
  - Demonstrate and validate performance against targets
  - Gain knowledge (e.g. fueling time, driving range, durability, cost, etc.) and apply lessons learned to R&D



## Summary

- New Materials & Concepts are critical- address volumetric capacity, T, P, kinetics, etc. (not just wt. %!)
- Basic science is valuable to develop fundamental understanding & complements applied research & development
- Engineering issues need to be considered
  - System issues, thermal mgmt, safety, refueling, testing, etc
- Examples of Essential Capabilities:
  - Modeling & Analysis
  - Combinatorial/high throughput methods
  - Material properties measurements
  - Standardized & accurate testing