

Hydrogen Release Behavior

Chris Moen Sandia National Laboratories May 17, 2007

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date Oct 2003
- Project end date Sep 2015
- Percent complete 33%

Budget

- Total project funding (from FY03)
 - DOE share: \$8.3M
- FY06 Funding: \$1.5M
- FY07 Funding: \$2.9M (\$2.1M for hydrogen release and risk)

Partners

- SRI: combustion experiments
- ISO/IPHE Contractor: R. Mauro
- IEA Contractors: W. Hoagland & Associates, and Longitude 122 West
- Interactions with CSTT, ICC, NFPA, NHA, NIST, CTFCA

Barriers & Targets

2006 MYRDDP Section 3.6.4.1 Targets:

- Provide expertise and technical data on hydrogen behavior and hydrogen technologies
- Hydrogen storage tank standards for portable, stationary and vehicular use

2006 MYRDDP Section 3.6.4.2 Barriers:

- J. Lack of National Consensus on Codes & Standards
- K. Lack of Sustained Domestic Industry Support at International Technical Committees
- N. Insufficient Technical Data to Revise Standards
- P. Large Footprint Requirements for Hydrogen Fueling Stations

Objectives

- Development of new hydrogen codes and standards needs a traceable technical basis:
 - characterize small-scale gaseous leaks, determine barrier wall effectiveness
 - perform physical and numerical experiments to quantify fluid mechanics, combustion, heat transfer, cloud dispersion behavior
 - develop validated engineering models and CFD models for consequence analysis
 - use quantitative risk assessment for risk-informed decision making and identification of risk mitigation strategies
 - Develop heat transfer and flow models to optimize 70 MPa fueling
- Provide advocacy and technical support for the codes and standards change process:
 - consequence and risk: ICC and NFPA(2, 55)
 - international engagement: HYPER (EU 6th Framework Program), Installation Permitting Guidance for Hydrogen and Fuel Cell Stationary Applications

Approach

- Conduct characterization experiments for hydrogen releases using imaging techniques to quantify plume characteristics (visible length, heat flux, concentration contours), validate engineering models against the experimental results
- Introduce more risk-informed decision making in the codes and standards development process using quantitative risk assessment (QRA); provide a traceable technical basis for new codes
- Characterize mitigation effectiveness of barriers/deflectors for hydrogen releases using experiments and models; validate Navier-Stokes calculations (CFD) of hydrogen jet flames and simulations of jet deflection; partner with HYPER on combustion hazards
- Develop fueling model to characterize the 70 MPa fast-fill process; apply model to identify optimal fuel strategy for the SAE J2601 interface standard

Rayleigh scattering is used to map concentration contours of small/slow leaks

Instantaneous H₂ mole fraction images in unignited horizontal jet

Comparison of jet ignitable gas envelope for hydrogen and methane

 H_2 jet at Re=2,384; Fr = 268

CH₄ jet at Re=6,813; Fr = 478

H₂ flammability limits: LFL 4.0%; RFR 75%

CH₄ flammability limits: LFL 5.2%; RFR 15%

Mole Fraction

Ignitable gas envelope is significantly larger in H₂ jets than CH₄ jets.

Buoyancy effects are characterized by Froude number

0.8

.0 F.0 Mole Fraction

0.2

Horizontal H₂ Jet (d_i=1.9 mm)

- Time-averaged H₂ mole fraction distributions.
- Froude number is a measure of strength of momentum force relative to the buoyant force
- Increased upward jet curvature is due to increased buoyancy at lower Froude numbers.

The engineering model has been validated against data for buoyant slow leaks

The buoyantlydriven flow model :

- uses a different entrainment law than our momentum jet model
- integrates along the stream line to capture plume trajectory

150

- Lower Froude number leaks are more buoyant
- Buoyancy increases entrainment rate causing faster concentration decay
- New entrainment law adds buoyancy-induced entrainment to momentum induced entrainment

Consequence-based separation distances for hydrogen facilities can be large

- Current code separation distances are not reflective of future fueling station operations (e.g., 70 MPa)
- Facility parameters (e.g., operating pressure and volume) should be used to delineate separation distances
- Consequence-based separation distances (i.e., single event) can be large depending on pressure, leak size, and consequence parameter
- QRA insights are being considered by NFPA-2 to help establish meaningful separation distances and other code requirements

Risk-informed code development framework

- Quantitative risk assessment (QRA) provides code developers with risk insights to help define codes and standards requirements:
 - requires quantification of consequences from of all possible accidents
 - requires definition of event frequencies
 - requires definition of acceptable risk levels and metrics
- Accounts for parameter and modeling uncertainty present in analysis; evaluates importance of risk assumptions through sensitivity analysis

Risk = Frequency x Consequence

QRA requires data!

Consequence parameters

- radiant heat flux levels for jet fires (from ICC Fire Code):
 - 1.6 kW/m² no harm to individuals for long exposures
 - 4.7 kW/m² injury (second degree burns) within 35 s
 - 25 kW/m² –equipment and structural damage (long exposure); third degree burns within 15 s
- Ignitable hydrogen concentration limits:
 - 4%, 6%, and 8% concentrations

Appropriate failure rate data

- component leakage data
- component failure data
- phenomenological probabilities

Accident frequency criteria

- suggested range of criteria
 - 10⁻⁶/yr to 2x10⁻⁴/yr

	Mean Component Leakage Frequency				
Component	Small Leak	Large Leak	Rupture		
Vessel	1E-3/yr	1E-4/yr	1E-5/yr		
Pipe	5E-5/m-yr	5E-6/m-yr	5E-7/m-yr		
Refueling Hose	0.1/yr	1E-2/yr	1E-3/yr		
Pump	3E-3/yr	3E-4/yr	3E-5/yr		
Compressor	3E-2/yr	3E-3/yr	3E-4/yr		
Electrolyser	1E-4/yr	1E-5/yr	1E-6/yr		
Vaporizer	1E-3/yr	3E-4/yr	5E-5/yr		
Valve	1E-3/yr	1E-4/yr	1E-5/yr		
Pipe Joints/Unions	3E-2/yr	4E-3/yr	5E-4/yr		
Flange	3E-4/yr	3E-5/yr	NA		
Filter	3E-3/yr	3E-4/yr	3E-5/yr		
Instrument Line	1E-3/yr	3E-4/yr	5E-5/yr		

Application to example fueling facility

- Demonstration of risk methodology for a representative fueling facility
 - evaluate important facility features (e.g., gas volume and leak isolation features)
 - determine importance of modeling parameters (e.g., data, geometry, temporal effects)
 - identify key risk scenarios
 - identify mitigation strategies to reduce the risk to acceptable levels
- Existing work is focused on hydrogen jet releases from gas pipes and gas storage cylinders, no over-pressure events

	Risk-Informed Separation Distances Required for Flash Fires in High Pressure Systems (distance in meters)						
	Pipe Leaks			Gas Storage Leaks ¹			
Risk Criteria	35 MPa	70 MPa	105 MPa	35 MPa	70 MPa	105 MPa	
2E-4/yr	0	0	0	13-26	16-32	19-36	
5E-5/yr	0	0	0	17-30	22-44	24-49	
1E-5/yr	0	0	0	29-59	38-76	44-87	
5E-6/yr	0	0	0	40-72	40-82	46-92	
¹ Range corresponds to distances for $8\% - 4\%$ H ₂ concentration by volume.							

Uncertainty and sensitivity analysis

- Accident frequency sensitivity:
 - distribution of component leak size versus frequency is a critical parameter
 - ignition probabilities are also critical parameters
- Consequence-related sensitivity:
 - consideration of leak orientation can reduce separation distances
 - inclusion of temporal effects is not important for jet fires
- Facility-related sensitivity:
 - reducing stored gas mass or increasing gas cylinder size can reduce leakage frequency and riskbased separation distance (i.e., lesscomplicated system)

We are studying barriers as a mitigation strategy to reduce safety distances

Price Avial Distance

- Goal: determine if barriers are an effective jet mitigation technique since mixtures of H₂ and air can ignite and potentially generate large overpressures.
- Collaborating with the HYPER project in Europe.

Over-pressure characterization

- Characterize H₂ transport and mixing near barrier walls through combined experiment and modeling
- Identify conditions leading to deflagration or detonation
 - residence time and ignition timing
 - magnitude of over-pressure and duration
- Develop correlations for wall heights dependency and wall-standoff distances
- Combine data and analysis with quantitative risk
 assessment for barrier configuration guidance

Axial Distance

The behavior of H_2 jet flames near barrier walls is also an issue of importance

- Characterize stabilization of H₂ jet flame on and behind barrier
- Characterize thermal/structural integrity of barriers
- Use CFD modeling and validation for H₂ jet flames to minimize the number of tests
- Develop correlations for wall height dependencies and wall stand-off distances
- Combine data and analysis with quantitative risk assessment for barrier configuration guidance

- Develop a network flow model and heat transfer correlation for the 70 MPa fast-fill hydrogen fueling process
- Model will be calibrated against Powertech constant pressure ramp rate experiments
- The calibrated model will be used to predict fill characteristics for untested and offdesign conditions
 - ambient and tank conditions
 - pre-cooling temperatures
 - fueling ramp rates
 - station-side plumbing variations
 - fuel system variations

Powertech's 70 MPa fast fill test facility equipped with hydrogensafe environmental chambers.

Future Work

Remainder of FY07

- Finish buoyancy-driven leak work and publish
- Perform risk assessment (QRA) of refueling station hazards
- Perform experiments and calculations for safety aspects of barrier walls
- Develop a network flow model for 70 MPa fueling process

FY08

- Continue investigation of safety aspects of barrier walls and other passive mitigation strategies
- Develop scientific theory for ignition criteria for turbulent hydrogen leaks
- Extend risk analysis to identify needs for step-out technologies; study how the public perceives risk in order to develop a risk communication strategy
- Begin scoping liquid hydrogen safety issues
- Complete studies and optimization of the 70 MPa fueling process

Summary

- Completed engineering model for buoyant plumes and reported at 2007 NHA meeting and SAE World Congress
- QRA is being used to make risk-informed decisions regarding set-backs as part of the NFPA-2 activity
 - Sandia staff are participating with the technical committee
 - QRA incorporates Sandia hydrogen release engineering models
 - QRA methodology is vetted through international risk experts as part of our involvement in IEA Hydrogen Safety Task 19
- Barrier walls are being characterized as a jet mitigation strategy for set back reduction
 - Partnership with SRI (testing) and HYPER (analysis)
 - CFD best-practices working group

